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General Introduction

Walking is an essential activity in our daily life, as indicated by the almost 9500 steps 
taken by healthy adults on average each day [1]. We walk to get from one place to 
another or as a recreational activity. Moreover, many daily life activities involve 
walking, such as household work, doing groceries, or walking the dog. Walking is also 
positively correlated with general physical health [2]. However, approximately 
20-30% of the Dutch population aged 55 and older have limited walking ability. This 
percentage increases up to 60% in people over 80 years [3–5]. The ability to walk 
depends on good physical function. People with restricted gait function have lower 
physical activity levels, reflected in an average daily step count of only 5048 [6].

Adequate assessment of an individual’s walking ability and limitations is important 
to determine the severity of gait impairments, identify appropriate treatment plans, 
and evaluate treatment effectiveness [7,8]. The assessment of walking ability often 
revolves around analyzing the gait capacity: how well an individual performs under 
optimal conditions [9]. Gait capacity comprises the ability to generate a stepping 
pattern, while maintaining balance and adjusting gait to meet environmental 
challenges and task requirements [10]. Nowadays, numerous technologies are 
available to objectively quantify walking activity and assess gait characteristics to 
describe the gait capacity, with wearable sensors gaining increasing interest [11,12]. 
Advanced gait analysis systems such as the Gait Real-time Analysis Interactive Lab 
(Motek Medical, Amsterdam) and C-Mill (Motek Medical, Amsterdam) can also be 
used for gait rehabilitation programs.

Treatment of walking impairments generally involves physiotherapy, with the 
therapist providing feedback on certain gait characteristics. For example, therapists 
may aim to increase stride length or encourage an adjustment in the gait pattern, 
such as lifting the foot higher. Wearable sensors have the potential to analyze these 
gait characteristics in real time. This opens up the possibility of providing feedback 
during self-guided gait exercises, potentially enhancing exercise effectiveness [13]. 
However, the accuracy of gait characteristic estimation by wearable sensors relies 
heavily on the algorithms applied to the captured data [14]. Therefore, the overarching  
aim of this thesis is to develop and evaluate algorithms for analyzing signals from 
wearable inertial measurement units (IMUs) to assess and provide feedback on 
various gait characteristics in people with walking impairments. While various 
diseases can cause walking impairments [15], this thesis focuses on describing gait 
patterns in two common diseases: people with stroke (Box 1) and lower-extremity 
osteoarthritis (Box 2).
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measure of an individual’s gait capacity. However, it is important to note that this 
method only provides average characteristics to describe the gait pattern instead  
of a stride-by-stride evaluation.

A noteworthy pioneer in the early phases of gait analysis technology for a more 
detailed assessment of the gait pattern was Gaston Carlet [17]. Carlet developed a 
shoe with pressure transducers, which resulted in the first record of the characteristic 
double bump shape of the ground reaction force in normal human gait as early as 
1872 [18]. Only a few years later, in 1878, Muybridge [19] and Marey [20] were among 
the first to describe human movement by using a series of cameras to take multiple 
pictures. Further advancements in human gait analysis were made by Eberhart and 
Inman, who used interrupted light to analyze human motion [21,22]. Their innovative 
methodology involved capturing photographs of subjects walking in front of a 
camera with small light bulbs at the hip, knee, ankle, and foot. To create a visual 
record, a slotted disk was rotated in front of the camera to generate a sequence of 
white dots at constant time intervals. These dots were then connected to determine 
joint angles, which could be measured manually. To this day, their work forms the 
fundament of the technique behind the widely-used marker-based optical motion 
capture systems.

Nowadays, marker-based optical motion capture systems in combination with force 
plates and electromyography are used for detailed gait analysis. The optical motion 
capture system tracks the position of optical markers strategically placed on the 
body, while force plates measure ground reaction forces and electromyography 
captures muscle activation patterns. Integration of these technologies into clinical 
practice has enhanced consensus among clinicians regarding diagnostic reasoning, 
clinical decision-making, and treatment plans for individuals with walking impairments 
[23,24]. Although instrumented gait analysis is proven to be of great value, it remains 
a costly assessment requiring specialized laboratory facilities and trained personnel 
for operation. Additionally, the configuration and number of cameras in optical motion 
capture systems determine the measurement volume, restricting the available 
walking space. Therefore, researchers have explored alternative technologies aimed 
at facilitating quick and easy measurement setups without the need for dedicated 
laboratory environments [1,25,26].

A promising breakthrough in this field comes from IMUs. Currently, commercially 
available IMUs consist of tri-axial accelerometers (measuring acceleration) and 
gyroscopes (measuring angular velocity), often in combination with magnetometers 
(measuring the earth’s magnetic field). Early versions of IMUs needed a fairly  
large battery pack and had limited data storage capacity. However, substantial 

Evaluation of walking
Many neurological and musculoskeletal diseases can affect the ability to generate a 
normal gait pattern, resulting in gait characteristics that deviate from the typical gait 
pattern’s characteristics. For example, people with hip osteoarthritis generally make 
shorter strides [15], and many people with stroke show reduced ability to lift their 
paretic foot [16]. The gait pattern is a sequence of repetitive movements of both legs  
in interaction with the trunk and the arms. Each repetition of this pattern is called a  
gait cycle and can be described by temporal (e.g. gait cycle duration and stance time), 
spatial (e.g. stride length and step width), kinematic (e.g. range of motion and 
maximal knee angle), and kinetic characteristics (e.g. propulsive force, maximal 
vertical ground reaction force). Figure 1 shows the gait cycle of the right leg, including 
examples of these gait characteristics. The longstanding practice of describing gait 
characteristics, segmenting the gait cycle in different phases, and defining instants  
is called gait analysis.

A brief history of gait analysis technology
Gait analysis is a long-standing practice and has witnessed substantial developments 
in the field [17,18]. One of the most basic methods to assess gait capacity concerns the 
evaluation of spatiotemporal gait characteristics. This can be achieved by measuring 
the distance covered within a fixed timeframe or by measuring the time needed to 
cover a predetermined distance, both providing an average gait speed. Additionally, 
adding step count enables the derivation of cadence and the average step length.  
To date, this is still one of the most commonly used methods to gain an overall 

Figure 1. Gait cycle of the right leg.
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marks a crucial difference between optical motion capture systems and IMUs.  
While optical motion capture systems measure the 3D position of markers in space, 
IMUs deduce the positional change through double integration of the measured 
acceleration.

Using inertial measurement units for gait analysis
Deriving temporal, spatial, and kinematic gait characteristics from IMU signals relies 
heavily on the IMU’s position on a specific body segment and subsequent processing 
steps during data analysis. Each body segment has its own distinct movement 
pattern during a gait cycle. As such, the signal of the recorded IMU data (acceleration, 
angular velocity, magnetic field) depends on the location of the IMU on the body  
(e.g. the foot, shank, or lower back). For example, Figure 3 illustrates the difference in 
the angular velocity signals between an IMU placed at the foot and the lower back.

Gait event detection and estimation of temporal gait characteristics
Previous research has shown that placing IMUs on the feet yields the most accurate 
identification of gait events (e.g. initial and terminal contact with the walking surface) 
in healthy participants [14,30,31]. While it is common to place IMUs on the lower back 
and the shanks, IMUs attached to the feet are closest to the impact source when 
walking. This results in more prominent signal features in the gyroscope and 
accelerometer data, with minimal delay, that correspond to gait event instances 
compared to data recorded by an IMU placed, for example, at the trunk.

For data captured from IMUs on the feet, a large variety of datatype and signal 
feature combinations have previously been used to identify gait events. Initial 
contact has been identified by the detection of peaks in either the angular velocity 
around the flexion-extension axis [30–33] or vertical acceleration [31,34]. Similarly, 
terminal contact has been identified through peak detection in the anterior-posterior 
component [31], vertical component [34], and magnitude [30] of the acceleration, 
as well as peak detection in the angular velocity around the flexion-extension axis 
[31–33]. While some studies attempted to identify the most accurate combination of 
IMU location and identification method both in healthy [14,31] and pathological gait 
[30,31], there is no clear evidence for a single best approach. In this thesis and based 
on the results from pilot data, I used the instant of crossing zero in angular velocity 
around the flexion-extension axis to identify initial contact and peak vertical 
acceleration to identify terminal contact. Regardless of the method used, once initial 
contact and terminal contact events for both feet are accurately identified, temporal 
gait characteristics such as stride time (between subsequent initial contact events), 
swing time (terminal to initial contact), and stance time (initial to terminal contact) 
can be calculated (see also Figure 1 for gait phase definitions). For example, the gait 

advancements in both hardware and software resulted in small and lightweight 
IMUs with increased battery life and storage capacity to record data for multiple 
hours [27]. These improvements have made IMUs minimally invasive for research 
participants [28].

The development of IMUs originates from the single-axis accelerometer measuring 
acceleration. The measured acceleration consists of two components: the change in 
velocity along the sensor axis and the gravitational force. As gravity consistently acts  
in the same direction, the measured magnitude of the gravity component depends 
on the orientation of the accelerometer, while the change in velocity magnitude is 
attributed to the accelerometer’s motion. By combining three accelerometers into a 
tri-axial accelerometer, an estimate of its orientation relative to gravity can be made. 
However, during movement, this estimate is flawed and can not distinguish between 
different orientations around the direction of gravity. To this end, gyroscopes are 
added to calculate the sensor’s orientation change by integrating the measured 
angular velocity [29]. To enhance the sensor orientation estimation in the transverse 
plane, around the gravitational direction, magnetometers have been integrated, 
measuring the earth’s magnetic field (Figure 2) [29]. Once the IMU’s orientation is 
determined, the gravitational component can be subtracted from the measured 
acceleration, leaving only the acceleration attributed to the sensor movement. This 

Figure 2. IMU sensor frame (SF) can be transformed using the estimated orientation (R) to 
align with the earth frame (EF). In the earth frame, the x-axis points to the magnetic north,  
the z-axis aligns with the gravitational direction, and the y-axis is perpendicular to the  
plane formed between the x- and z-axes. Once the IMU is oriented in the earth frame,  
the gravitational component can be subtracted from the measured acceleration to assess  
the linear acceleration of the IMU.

xEF

yEF

zEF

y x
z

R SF to EF
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Therefore, a zero velocity correction cannot be applied for each gait cycle during 
walking, resulting in the accumulation of sensor drift over time and a corresponding 
increase in error with each gait cycle.

Once the position and gait events are known, the difference in position between 
certain gait events can be used to determine spatial and spatially dependent gait 
characteristics. For instance, the difference in position between two successive 
initial contact events is equal to the stride length. Dividing this stride length by the 
elapsed time between these initial contact events yields the stride velocity.

Although the algorithms for gait event identification and calculations of gait 
characteristics from IMU data show promising results in the assessment of healthy 
gait, their performance is challenged in pathological gait [38–40]. This stems from 
deviating cyclic patterns in pathological gait compared to the assumed cyclic pattern  
of healthy people for which the algorithms were designed. For example, impaired 
dorsiflexion of the foot will likely result in less prominent angular velocity peaks 
around the transverse axis captured by an IMU attached to the foot, commonly used 
to identify initial contact [41]. As a result, recognition of the angular velocity peaks, 
and thus initial contact, by an algorithm can be more challenging and remains 
inadequately addressed in impaired gait to date.

Estimation of kinematic gait characteristics
To determine joint kinematics, a setup is required in which an IMU is attached to each 
body segment around a joint (Figure 4) [42–44]. After determining the orientation of 
both sensors in the global coordinate system, the orientation of the IMU attached to 
one segment (e.g. the foot) can then be expressed in the coordinate system of the 
IMU attached to the other segment (e.g. the lower leg) to estimate the joint (e.g. 
ankle) angles [42–44].

Given that an IMU must be attached to each segment around a joint to calculate joint 
angles, the setup requires a larger number of sensors compared to the minimal setup  
to determine spatiotemporal gait characteristics. Moreover, an additional calibration  
is often needed to obtain reliable joint angle estimates [42,44]. This calibration 
involves defining the IMU’s local coordinate system in relation to the segment’s 
coordinate system. One common method involves recording data from movements 
in a single plane, such as ankle flexion-extension [44]. Cross-talk of this movement  
on, for instance, the rotation axis of the sensor is corrected in the actual measurement 
through this calibration and will only be attributed to the flexion-extension 
movement. Alternatively, sensor-to-segment alignment can be achieved by placing 
the IMUs so that their local coordinate systems align with the anatomical coordinate 

cycle duration equals the time elapsed between two consecutive initial contact 
events.

Estimation of spatial gait characteristics
To calculate spatially dependent gait characteristics, the acceleration in the earth 
frame has to be integrated twice to estimate the change in position relative to the 
initial position. From the estimated change in position in combination with the 
identified gait events, spatially dependent gait characteristics can be derived for 
each gait cycle. Attaching IMUs to the feet enables the deduction of spatial gait 
characteristics from the IMU’s positional change while obtaining these characteristics 
from IMUs attached to a more proximal segment requires the application of 
biomechanical models [35,36]. Although previous research with these models showed 
promising results in the estimates of spatial gait characteristics [36], applying a model 
inherently introduces assumptions and uncertainties [35]. Therefore, feet-placed 
IMUs might be more accurate in estimating spatial gait characteristics.

Another benefit of IMUs placed at the feet concerns the correction of sensor drift. 
Sensor drift, stemming from signal noise, is a concern when integrating the acceleration 
data. This integration of noise results in a gradual increase in error over time. Typically, 
the sensor drift is corrected by forcing the velocity to be zero when you are certain  
that the sensor is stationary. When sensors are attached to the feet, this correction  
can be done during the flat foot phase of walking [37]. By applying this correction in 
each flat foot phase, the impact of sensor drift on position determination is minimized. 
Sensors attached to more proximal segments often lack such a clear static period. 

Figure 3. Angular velocity captured by IMUs on the foot (black, left y-axis) and lower back 
(green, right y-axis) in healthy gait. Shaded areas are swing phases that start at terminal 
contact (triangle pointing up) and end at initial contact (triangle pointing down).
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Outline of this thesis

The aim of this thesis is to develop and evaluate IMU-based algorithms to assess and 
provide feedback on gait characteristics in people with gait impairments. Chapters 2,  
3, and 4 focus on the development of valid algorithms to analyze different gait 
characteristics, while chapters 5 and 6 study their clinical relevance. Chapter 7 
evaluates the impact of feedback on the gait pattern.

In Chapter 2, I describe the development and accuracy of an IMU-based algorithm to 
extract spatiotemporal gait characteristics of straight-ahead walking. To ensure that  
the algorithm is applicable across diverse gait patterns, and irregular  validation is 
conducted in healthy people during regular and irregular walking as well as in people 
with stroke. The research question of this study is: what is the accuracy of an IMU- 
based algorithm to estimate spatiotemporal gait characteristics from IMU data in  
regular and irregular gait?

In Chapter 3, the algorithm validated in Chapter 2 is applied to evaluate the effect of 
including accelerating and decelerating steps around a turn on spatiotemporal gait 
characteristics. To obtain a substantial number of strides to estimate gait character
istics, a walking trajectory of 5 to 10 meter is commonly used to walk back and forth 
with 180-degree turns at each end. Understanding the effect of accelerating and 
decelerating strides on average and the variability of gait characteristics is essential 
for isolating the steady-state portion of gait. This study has two main research 
questions: 1) what is the effect of stride selection methods on the means and 
variability of spatiotemporal gait parameters in tests including turns? and 2) how 
many strides preceding and following 180-degree turns should be excluded for 
analysis of steady-state gait?

After focusing on spatiotemporal gait characteristics in previous studies, Chapter 4 
concentrates on kinetic (forward propulsion) and kinematic (foot strike angle) gait 
characteristics. In people with stroke, improving the foot strike angle and forward 
propulsion are common goals in gait rehabilitation. The ability to assess these char-
acteristics would be of great additional value for the applicability of IMUs in clinical 
practice. Therefore, the goal of Chapter 4 is twofold: first, I analyze if the foot strike 
angle can be measured with an IMU. Secondly, as IMUs do not measure force, I will 
study if a suitable indicator for forward propulsion can be identified from IMU data. 
The research questions of this study are: 1) what is the accuracy of the IMU-derived 
foot strike angle compared to optical motion capture in people with stroke? and 2) are 
there IMU-based parameters indicative for forward propulsion in people with stroke?

system. This approach eliminates the necessity for posture and movement calibration, 
and it has been successfully applied to the foot and shank [45,46].

IMU’s to provide feedback on gait
With the possibility to analyze gait characteristics in real time, IMUs have the 
potential to provide real-time feedback on the performance of these characteristics 
[13]. This creates opportunities for extending therapeutical guidance beyond the 
clinical setting, potentially enhancing the effectiveness of self-guided training 
exercises. For example, in people after a stroke, foot orientation at initial contact is  
an important aspect of gait rehabilitation (see Box 1). This foot orientation at initial 
contact, is defined as the angle between the foot and the walking surface, referred to 
as the foot strike angle. A drop foot leads to toe-first contact rather than heel-first, 
increasing the risk of stumbling and falls [47,48]. By attaching an IMU to the foot,  
the orientation of the foot can be estimated and provided as feedback, with the idea 
to improve the foot strike angle and prevent stumbling. While it is known that 
task-specific extrinsic feedback (for example by a physiotherapist) effectively 
enhances ankle power [49] and ankle angle at initial contact [13], limited knowledge 
exists regarding the effect of using IMUs to provide feedback for training purposes  
on gait characteristics [13,50].

Figure 4. To calculate joint angles from IMUs, in this example the ankle joint angle, it is 
necessary to express the orientation of both IMUs in the global frame to be able to compare 
their orientations. Subsequently, the orientation of the IMU attached to one segment (e.g. the 
foot) can be expressed in the coordinate system of the IMU attached to the other segment (e.g.  
the lower leg) by applying a rotation. This rotation is the estimate of the joint (e.g. ankle) angles.

y x
z
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In Chapter 5, I use the validated algorithm from Chapter 2 to quantify the gait character
istics of people with knee osteoarthritis with and without an indication for knee 
replacement surgery. It is conceivable that people who are considered candidates for 
surgery have poorer levels of mobility than those who are not considered appropriate 
candidates for surgery. In this study, we compared mobility metrics assessed with 
wearable sensors between people with and without an indication for knee joint 
replacement surgery, to explore if differences between groups existed. The research 
question of this study is: which gait characteristics discriminate between individuals 
who are and are not deemed appropriate candidates for knee joint replacement 
surgery?

In Chapter 6 I translate the System Usability Scale [51] to Dutch, to be able to evaluate 
the usability of a feedback system that I will develop in Chapter 7. Worldwide, 
the System Usability Scale is the most common questionnaire to evaluate system 
usability [52]. Since it is a prerequisite to administer questionnaires in the user’s 
native language, I translate the System Usability Scale to Dutch and validate its 
applicability for healthcare technologies by assessing internal consistency, test-retest 
reliability and construct validity. After translating the questionnaire, the research 
question for the validation phase of this study is what is the internal consistency, 
test-retest reliability and construct validity of the Dutch version of the System 
Usability Scale for healthcare innovations with a focus on rehabilitation technologies?

In Chapter 7, I study if people in the chronic phase after a stroke are able to adjust their 
gait pattern when real-time feedback on the foot strike angle and propulsive force is 
provided. Additionally, I examine how people after a stroke perceive the usability of 
the feedback system for training purposes using the Dutch version of the System 
Usability Scale. The research questions addressed are: 1) can people with stroke 
adjust their foot strike angle and forward propulsion based on real-time feedback? 
and 2) how do participants perceive the usability of the system providing this 
feedback?

Finally, a summary of the presented studies followed by a general discussion of the 
results and avenues for future research will be given in Chapter 8.

Box 1: Gait patterns after stroke

Worldwide, stroke is the leading cause of acquired physical disability in adults, with an 
incidence rate of approximately 90 per 100.000 people, rising to around 1200 per 100.000 
people aged over 75 years old [53]. A stroke manifests as an acute neurological deficit with 
symptoms lasting for at least 24 hours, caused by a vascular injury within the central 
nervous system [53]. This vascular injury stemming from either infarction or hemorrhage, 
induces brain ischemia. Depending on the specific brain region, patients show different 
symptoms that vary in severity.

A stroke often causes damage to the descending motor pathways, resulting in loss of motor 
selectivity and muscle force, particularly prominent around the ankle region. Around 20% 
of people after a stroke suffer from weakness of the ankle dorsiflexors, commonly referred  
to as ‘drop foot’ [16]. This weakness can result in a midfoot or even toe landing instead of  
the typical heel strike in healthy gait (Figure 5).

In combination with a reduced ability to flex the knee and hip, the foot drags across the 
walking surface during the swing phase. To prevent this, patients often use an energetically 
inefficient compensatory mechanism around the hip called ‘circumduction’. Hip circum
duction is characterized by abducting the paretic hip and lifting the pelvis on the paretic 
side. Furthermore, patients with a drop foot generally have concomitant weakness in ankle 
plantarflexors, causing diminished forward propulsion during push-off [54]. Together, 
these factors contribute to reduced gait speed, unstable gait, and altered gait pattern 
compared to healthy gait [47].

Figure 5. Swing phase of the right leg with a drop foot.

Terminal
contact (TC)
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contact (IC)
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Introduction

Gait analysis is a valuable tool for diagnosis and treatment evaluation of gait 
impairments in clinical settings. Traditionally, optical motion capture systems (OMCS)  
and force plates are used for gait analysis. However, a major downside of these 
expensive systems is the requirement of a lab with specialized staff, limiting the 
accessibility of gait analysis in clinical practice. Moreover, these dedicated labs often 
provide optimal controlled conditions for gait assessment, limiting ecological validity [1].  
A promising alternative for gait analysis is the use of inertial measurement units 
(IMUs). These compact wearable sensors enable gait analysis not restricted to the  
lab setting, at a lower cost, and easier to operate.

In the past decades, many research groups have developed algorithms for gait 
assessment based on IMU data. An overview of different algorithms is given in a 
reviewing article by Diaz et al. [2] and a performance comparison of seventeen common 
algorithms is made in the review by Panebianco et al. [3]. These gait algorithms are 
developed to identify gait events and subsequently calculate spatiotemporal gait 
parameters. Despite the increasing number of studies in this field, several limitations 
hinder further uptake in clinical settings.

The first obstacle to using IMU-based gait parameters in the clinic stems from a 
scarcity of validation studies testing IMU-based algorithms in people with irregular 
walking patterns. The validity of gait algorithms has predominantly been tested for 
regular gait in healthy participants [3]. However, individuals with gait deficits often 
walk with irregular patterns (e.g. due to neurological diseases) [3–5]. It is known that 
data from IMUs is less predictable in irregular gait patterns, compromising the 
performance of many of the developed algorithms [6,7]. For example, Hundza et al. 
found a mean error of 2 cm in stride length estimation in healthy controls, which 
increased to 11 cm in people with Parkinson’s disease [6]. 

A second limitation of published algorithms is that they are typically designed and 
optimized for specific locations of the IMUs on the body, e.g. shank, ankle or shoe. As 
signal features of IMUs depend on the body location, the applicability of these 
algorithms to placement on other body parts can be limited. Most common set-ups 
are (combinations of) one IMU on the lower back, one sensor on each shank, or on 
both feet [3]. In general, IMUs placed closer to the source of impact (lower legs or feet 
with the walking surface) have the most prominent signal features [3,8]. Moreover, 
Jasiewicz et al. found that feet-based algorithms outperform shank-based algorithms 
regarding the accuracy of gait event detection in pathological gait [9]. They concluded  
that the irregular and less smooth movement of the shank during pathological gait 

Abstract

 
Studies using inertial measurement units (IMUs) for gait assessment have shown 
promising results regarding accuracy of gait event detection and spatiotemporal 
parameters. However, performance of such algorithms is challenged in irregular 
walking patterns, such as in individuals with gait deficits. Based on the literature, 
we developed an algorithm to detect initial contact (IC) and terminal contact (TC) 
and calculate spatiotemporal gait parameters. We evaluated the validity of this 
algorithm for regular and irregular gait patterns against a 3D optical motion capture 
system (OMCS).

Methods
Twenty healthy participants (aged 59±12 years) and 10 people in the chronic phase 
after stroke (aged 61±11 years) were equipped with 4 IMUs on both feet, sternum 
and lower back (MTw Awinda, Xsens) and 26 reflective makers. Participants walked 
on an instrumented treadmill for 2 minutes (i) twice with their preferred stride 
lengths and (ii) once with irregular stride lengths (±20% deviation) induced by 
light projected stepping stones. Accuracy of the algorithm was evaluated on 
stride-by-stride agreement of IC, TC, stride time, length and velocity with OMCS. 
Bland-Altman-like plots were made for the spatiotemporal parameters, while 
differences in detection of IC and TC time instances were shown in histogram 
plots. Performance of the algorithm was compared between regular and irregular  
gait with a linear mixed model. This was done by comparing the performance  
in healthy participants in the regular vs irregular walking condition, and by 
comparing the agreement in healthy participants with stroke participants in the 
regular walking condition.

Results
For each condition at least 1500 strides were included for analysis. Compared to 
OMCS, IMU-based IC detection in both groups and condition was on average 9-17 
(SD ranging from 7 to 35) ms, while IMU-based TC was on average 15-24 (SD ranging 
from 12 to 35) ms earlier. When comparing regular and irregular gait in healthy 
participants, the difference between methods was 2.5 ms higher for IC, 3.4 ms 
lower for TC, 0.3 cm lower for stride length, and 0.4 cm/s higher for stride velocity  
in the irregular walking condition. No difference was found on stride time. When 
comparing the differences between methods between healthy and stroke 
participants, the difference between methods was 7.6 ms lower for IC, 3.8 cm 
lower for stride length, and 3.4 cm/s lower for stride velocity in stroke participants.  
No differences were found on differences between methods on TC detection  
and stride time between stroke and healthy participants.

Conclusions
Small irrelevant differences were found on gait event detection and spatiotemporal 
parameters due to irregular walking by imposing irregular stride lengths or patho- 
logical (stroke) gait. Furthermore, IMUs seem equally good compared to OMCS to 
assess gait variability based on stride time, but less accurate based on stride length.
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stroke patients from the gait rehabilitation program of the Sint Maartenskliniek were 
included in this study. Clinical data of the stroke participants were derived from  
the electronic patient record. Participant characteristics can be found in Table 1,  
the Chi-square and Mann-Whitney U tests revealed no significant differences 
(p≥0.05) between the groups based on gender, age, height or weight.

The study protocol was in line with the Declaration of Helsinki and was granted an 
exemption of the Dutch medical scientific research act (WMO) by ‘METC Oost-
Nederland’ (identification number: 2021-8191). Prior to study participation, written 
informed consent was provided by all participants.

Materials
Participants were equipped with 4 IMUs (MTw Awinda, Xsens, Enschede) at the dorsal 
side of both feet, sternum, and lower back (L4/5) and 26 reflective markers for  
the OMCS according to the VICON plug-and-gait lower body model [19]. Xsens MT 
Manager software suite version 2019.2 was used for data capture of the IMUs. All 
treadmill walking conditions were performed on the GRAIL (Gait Real-time Interactive 
Analysis Lab, (Motek Forcelink, Amsterdam, the Netherlands)); an instrumented 
treadmill with an ten-camera OMCS (VICON, Oxford, United Kingdom). All overground 
walking conditions were performed in the overground gait lab, with a ten-camera 
OMCS (VICON, Oxford, United Kingdom). The IMU system and OMCS recorded at 100 
Hz and were synchronized by a high-low pulse with OMCS as master.

Measurement protocol
During treadmill walking, healthy and stroke participants wore a harness attached to 
the ceiling for safety precautions. All participants walked on the treadmill at a 

was likely due to increased instability, which in turn caused more disturbances in the 
sensor signal [9]. Unfortunately, the number of studies evaluating the validity of gait 
algorithms processing data from IMUs on the feet in pathological gait is limited [2,3].
Finally, almost all validated gait algorithms are undisclosed. So far, most gait algorithms 
are only schematically described in published articles [4–7,9–15]. Without code sharing, 
replication, validation, and use of these algorithms in the clinic remains challenging.

Based on previous literature [5,10,16,17], we developed an algorithm for gait assessment 
using IMUs on both feet and the trunk (lumbar level). We evaluated the validity of this 
algorithm against an OMCS for regular and irregular walking patterns. We operationalized 
irregular walking patterns in two ways: first, by using stepping targets on an instrumented 
treadmill in healthy participants, cueing walking with constant and varying step 
lengths. Secondly, we evaluated the algorithms in people with stroke. Based on 
results previously reported in the literature we based our algorithm on [5,10,16,17], 
we expected a similar and small constant error of less than 5 cm between the gait 
algorithm and OMCS in regular and irregular walking in healthy participants and in 
regular walking in people with stroke. However, a larger variability of the error in the 
stroke population compared to the healthy population, was expected based on 
previous literature in pathological gait [18]. Participants were tested on a treadmill to 
collect a large number of steps for each participant. Healthy participants performed 
overground walking to ensure consistent results for this condition. We also developed 
the gait algorithm in an open-source programming language (Python), making the 
data and code freely available for further use.

Materials and methods

Participants
Healthy participants aged between 40 and 90 years old, who were able to walk for at 
least two minutes without assistance were recruited from the community between 
April 2021 and February 2022. We included five participants per age category, 40-49, 
50-59, 60-69 and 70+ years, resulting in a total of N=20 healthy participants (Table 1). 
Exclusion criteria were any diseases affecting gait or balance, such as osteoarthritis, 
neurological or neuromuscular disease or deformities of the lower extremities, and 
BMI > 30 kg/m2.

Stroke participants were able to walk for at least two minutes without assistance, 
participated in a walking therapy group due to their stroke, were above 18 years, and 
had to understand verbal instructions. Exclusion criteria were any other diseases 
affecting gait or balance, hemispatial neglect, and a BMI > 30 kg/m2. A total of N=10 

Table 1. Participant characteristics.

Healthy participants Stroke population

N 20 10

Gender (male/female) 10/10 7/3

Age (mean ± SD years) 59 ± 12 61 ± 11

Height (mean ± SD cm) 174 ± 7.2 176 ± 7.5

Weight (mean ± SD kg) 75 ± 8.0 81 ± 9.1

Affected side (left/right) - 4/6

Stroke type (ischemic/hemorrhagic) - 7/3

FAC score (min-max) - 3-5

FAC: Functional Ambulation Categories.
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frequency) of the IMUs, according to Sabatini et al. [5]. OMCS data was filtered with a 
second-order low-pass Butterworth filter (15 Hz cut-off frequency).

Data analysis
Figure 1 shows a typical gait cycle and corresponding mediolateral gyroscope and 
vertical accelerometer signals of the IMUs on the feet, and the velocity of the heel and 
toe markers of the OMCS. A gait cycle consists of a stance phase, initiated by an initial 
contact event (IC), and a swing phase, starting at a terminal contact event (TC). 
Accurate identification of IC and TC events is crucial for correctly calculating 
spatiotemporal gait parameters. They also define the time period for further 
integration of the IMU signals to determine spatial parameters.

Another important gait event for the IMU-based gait algorithm is the instant of 
mid-swing, which is used to identify the IC and TC. Based on Sabatini et al., mid-swing 
events were identified as the maximum in the clockwise direction of the angular 
velocity around the mediolateral axis (i.e. the axis of rotation for flexion-extension 
movements) [5]. To this end, scipy.signal.find_peaks function with peak distance at 
0.7 seconds, prominence at 1 rad/s was used. Based on Behboodi et al. [10], IC events 
were identified at the first instance of zero-crossing, positive to negative, after 
mid-swing in the angular velocity around the mediolateral axis. Peaks between 
mid-swing events in the vertical acceleration based on Mercer et al. were used to 
identify TC events (scipy.signal.find_peaks function with no further specifications) 
[17,20]. In case multiple peaks were found, the peak at the instance with the largest 
angular velocity in the anti-clockwise direction was identified as the actual TC event; 
the others were deemed as an artefact. Finally, foot flat was identified based on 
Behboodi et al. [10]. The start of foot flat was defined as the instant of TC on the 
contralateral side. The end of foot flat (i.e. heel-off) was identified at the instant of 
mid-swing on the contralateral side [10]. Based on the instants of the gait cycle, 
stance phase (initial contact to terminal contact), swing phase (terminal contact to 
initial contact) and foot flat phase (start of foot flat to end of foot flat) were identified.

After gait event detection, spatial parameters were calculated. The tri-axial velocity 
of the foot was estimated by numerical integration of the accelerometer (earth 
frame) signal according to equation 1 over the duration of the trial (120 s). However, 
this involves some signal drift. To reduce this signal drift, a sigmoid curve, based on a 
p-chip interpolation (scipy.interpolate.pchip_interpolate function) was subtracted 
from the signal (zero-velocity updates) [13]. The p-chip interpolation function was 
defined between each period of foot flat (equation 2). Hereafter, zero-velocity 
updates were applied at each foot flat (equation 3) [21–23].

self-selected speed before data collection for approximately four minutes for famil-
iarization purposes. Subsequently, they walked on the instrumented treadmill in two 
conditions: regular and irregular treadmill walking.

In the regular treadmill walking condition, participants walked for 2 minutes at a 
self-paced, comfortable walking speed. Self-paced walking allowed participants to 
adjust the speed of the treadmill by walking more at the front of the belt (increase in 
speed) or at the back of the belt (decrease in speed). The participants with stroke 
performed the regular walking task in self-paced mode if possible, but in fixed speed 
mode if their walking capacity was insufficient to regulate the treadmill’s speed. After 
the regular walking condition, all participants performed the irregular walking 
condition, consisting of a precision stepping task at the average walking speed during 
the regular walking condition. Rectangular stepping stones (30x15 cm) were projected 
on the treadmill, functioning as step targets. The stepping stones were projected at 
stride lengths randomly varying between 80-120% (80, 90, 100, 110, 120) of the 
preferred stride length of the individual participant. Participants were instructed to 
walk without holding the handrail bars if possible but were allowed to do so if needed. 
Participants were allowed to rest between walking conditions. For each of the 
measurements, data collection was started once participants indicated they had 
reached a comfortable walking speed. Data were recorded for a duration of two 
minutes and stopped before participants were decelerating, ensuring no accelerating 
and decelerating phases were included in the dataset for further analysis.

The healthy participants performed an additional overground walking task. They 
were asked to walk ten times back and forth through the measurement volume of the 
overground gait lab (approximately 5 meters) at a comfortable walking speed.

Data processing
All data processing and analysis described in this paragraph and in ‘Data analysis’ are 
included in the algorithm code available at: https://github.com/SintMaartenskliniek/
IMU_GaitAnalysis (Release ‘Validation study’, tag ‘v1.1.0’).

IMU data captured by MT Manager software (2019.2) included angular velocity and 
acceleration in the sensor frame, acceleration in the earth frame, and orientation in 
quaternion and Euler angle format. OMCS data was captured by VICON Nexus 
software (version 2.4). All further data processing and analyses were performed in 
Python 3.10. 

Prior to any data analysis, a second-order low-pass Butterworth filter was applied to 
the angular velocity (15 Hz cut-off frequency) and acceleration data (17 Hz cut-off 
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Note that the initial velocity at the start of the measurement (t = 0) was set at zero. 
Since the measurements started while participants were walking and the leg could 
be in the swing phase, this could result in an inaccurate velocity estimation until the 
first foot flat phase was reached.

Numerical integration of the velocity over the duration of the trial (120 s) results in 
tri-axial position estimation over the duration of the trial:

position (t) = velocity (t) * Ts + position (t – 1)
for each instant �, with �� = 1/sample frequency

(4)

Note that the initial position at the start of the measurement (t = 0) was set at zero.
Stride time was defined as the time between two consecutive IC events:

stride timen = time at ICn – time at ICn-1 (5)

Stride length was defined as the distance traveled by the foot during the stride time 
(IC till following IC) in the horizontal plane:

stride lengthn = sqrt( (position XICn - position XICn-1)2 + 
(position YICn - position YICn-1)2 )

(6)

Stride velocity was calculated as the stride length divided by the stride time:

stride velocityn = stride lengthn / stride timen (7)

Gait event detection in the OMCS data was performed according to the validated 
velocity based method of Zeni et al. [24]. This method defines TC at the instant that 
the velocity vector in anterior-posterior direction of the toe marker crosses zero in 
the anterior direction. IC is defined at the instant that the velocity vector in the ante-
rior-posterior direction of the heel marker crosses zero in the posterior direction. For 
treadmill walking, the position of the toe and heel markers in the global coordinate 
system were used whereas the position of toe and heel markers were calculated 
relative to the pelvis for overground walking. Stride time and stride velocity were 
calculated according to the same definitions as used for the sensor algorithm 
(equations 5 and 7). Stride length for OMCS data during treadmill walking was 
calculated as the average velocity of the ankle on the contralateral side during flat 
foot (equations 8 and 9), multiplied by the stride time and added to the difference in 
position between IC and the following IC along the Y-axis, which is the axis in line 
with the walking direction (equation 10). In overground walking the stride length was 
calculated as the difference in position between two consecutive IC events of the 
heel marker (equation 11).

swing timen = ICn – TCn-1 (8)

velocityraw (t) = acceleration (t) * Ts + velocity (t – 1) (1)

for each instant �, with �� = 1/sample frequency

velocityde-drifted (t) = velocityraw (t) – 
sigmoid curve of drift estimation (t)

(2)

velocity (t) = velocityde-drifted (t) – velocityde-drifted at foot flat (3)

Figure 1. Typical gait cycle with corresponding IMU and OMCS data. Upper graph is of the right 
foot and the lower graph is of the left foot as presented in the gait cycle on the top of the figure. 
The left graphs show the angular velocity around medio-lateral axis (flexion-extension 
movement, green) and vertical acceleration (earth frame, orange) of the IMUs attached to the 
feet. The right graphs show the velocity of the toe marker (blue) and velocity of the heel marker 
(pink) of the OMCS. Terminal contact (green triangle pointing up) was determined at the peak 
acceleration before mid-swing (IMU) and zero-crossing of the velocity of the toe marker 
(OMCS). Mid-swing (cross) was identified at peak angular velocity (IMU). Initial contact (red 
triangle pointing down) was identified at the zero-crossing of the angular velocity after 
mid-swing (IMU) and zero-crossing of the velocity of the heel marker (OMCS). Foot flat was 
identified between terminal contact and mid-swing of the contralateral foot (for both IMU 
and OMCS).

Terminal stance Terminal contact Mid swing Initial contact Mid stance

OMCS

Terminal stance Terminal contact Mid swing Initial contact Mid stance

IMU

Right foot

Left foot

Medio-lateral angular velocity
Vertical acceleration

Velocity heel marker
Velocity toe marker
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To evaluate the algorithm’s performance in irregular walking, we compared 
differences between methods for regular with irregular conditions in healthy controls  
and for regular with irregular conditions in stroke participants using a linear mixed 
model with the difference between methods for each gait parameters as dependent 
measure, condition as fixed effect and participant ID as random effect. We also tested 
differences between methods comparing healthy versus stroke participants during 
regular walking. For this comparison, we constructed linear mixed models with the 
difference between methods of each gait parameter as dependent variable, group 
(healthy vs stroke) as fixed effect and participant ID as random effect. For CoV 
measures, we compared regular vs irregular walking in healthy participants using a 
paired t-test and compared healthy and stroke participants during regular walking 
using an unpaired t-test.

The significance level was set at alpha 0.05. Differences between overground and 
treadmill walking in the differences between methods were described by mean 
differences and SD. All statistical analysis was done in RStudio (R version 2022.02.0), 
using the lme4 package (version 1.1-29).

Results

Treadmill walking
All participants performed all regular and irregular walking conditions except for one 
individual with stroke (participant ID: STR_03), whose walking capacity was 
insufficient to perform the target stepping task. Therefore, only a fixed-speed trial 
representing regular walking from this participant was included for further analysis. 
One other stroke participant (participant ID: STR_09) had to perform the regular 
walking task at a fixed treadmill speed. All other participants performed the regular 
walking condition in self-paced mode. Stride time varied between 0.71 and 2.58 s, 
stride length between 0.26 and 1.83 m, and stride velocity between 0.14 and 1.73 m/s 
across all participants and conditions (Table 2).

Gait event detection
Detection of IC when collapsing groups and conditions was on average 9-17 ms later 
based on IMU compared to OMCS (Figure 2, panels A, E). TC was on average 15-24 ms 
earlier for the IMU-based method (Figure 2, panels B, F). For both gait events, the 
variance of difference between methods (SD for each individual) was limited in 
healthy participants, and more apparent in stroke participants (Figure 2, panels C, D 
and G, H). 

velocitytreadmill
n = (position Y contralateral foot

 TC + 0.1*swing time – 
position Y contralateral foot

 TC + 0.6 * swing time) / (0.5*swing time)
(9)

stride lengthn OMCS treadmill walking = 
(position YICn - position YICn-1) + velocitytreadmill

n * stride timen
(10)

stride lengthn OMCS overground walking = 
(position YICn - position YICn-1)

(11)

Post-hoc analysis
Two methods are frequently used in literature to identify gait events: the OMCS-based 
method used in this study and a method based on force plate data [3,10,13,16].  
The benefit of OMCS-based gait event detection is that multiple strides per stretch in 
the overground lab can be analyzed against only one stride per stretch on force 
plates. To maximize the number of strides for analysis in the overground lab and be 
consistent in the methods used, the IMU-based algorithm was validated against 
OMCS in both settings. Nevertheless, during treadmill walking trials, force data was 
collected by the embedded force plates of the GRAIL. We checked the magnitude of 
the difference, including limits of agreement (LoA) at 1.96 standard deviation (SD), in 
gait event detection between the OMCS-based method and force plate data as 
ground truth.

Statistical analysis
Groups were compared on gender distribution by the Chi-square test, and on age, 
height and weight by the Mann-Whitney-U test. The validity of the gait algorithm 
was evaluated on a stride-by-stride basis, quantifying the agreement of the instant 
of IC and TC, stride time, stride length, and stride velocity, with OMCS-derived 
outcomes as reference [24]. For stride time and length variability, we calculated the 
coefficient of variation (CoV) for each participant, defined as the SD over all strides 
divided by the mean of all strides within a participant. Differences between sensor 
and OMCS-derived timing of IC and TC were visualized in histograms. For stride time, 
stride length and stride velocity, we created Bland-Altman-like plots to reflect the 
agreement between the IMU-based and OMCS-based analysis. Because the 
difference between methods for stride length and velocity showed a downward 
trend with increasing means of the value (non-uniformity), evaluated using linear 
regression models, we did not calculate the limits of agreement. To evaluate variance 
within and between subjects, we constructed Bland-Altman-like plots based on the 
mean over strides within a participant, as well as based on all separate strides (except 
for CoV measures which can only be calculated per participant). 
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Figure 2. Differences in IC (left panels) and TC (right panels) between IMU-based and OMCS- 
based algorithms in regular (green) and irregular (blue) walking conditions in healthy participants 
(top panels, A-D) and in regular (pink) and irregular (orange) walking conditions in stroke 
participants (bottom panels, E-H). Histograms are on a stride-by-stride basis for all participants. 
Solid vertical lines indicate mean difference and dashed vertical lines indicate the 1.96*SD. 
The ‘Individual trials’ plots show the mean difference and SD for each trial.
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In both conditions, stride length in healthy participants was 0.03 m (SD regular: 0.04 
m, SD irregular: 0.05 m) smaller when based on IMUs compared to OMCS (Table 4 and 
Figure 3). In stroke participants, the stride length difference between methods was 
0.00 m (SD regular: 0.06 m, SD irregular: 0.04 m, Table 4 and Figure 3). Comparing 
regular vs irregular walking in healthy participants, resulted in larger differences 
between methods for the regular walking condition (0.003 m, t = 4.500, p < 0.001, 
Table 3). The difference between methods for stride length during regular walking 

When comparing regular with irregular walking in healthy participants, the difference 
between methods for IC was 2.5 (95%CI: 2.2, 2.8) ms smaller in the regular condition  
(t = 15.76, p < 0.001, Table 3). The difference between methods for TC was 3.4 (95%CI:  
3.0, 3.8) ms smaller in the irregular compared to regular condition (t = 18.06, p < 0.001,  
Table 3). The second operationalization of the effect of irregular walking, comparing 
stroke with healthy participants, showed that the difference between methods for  
IC was 7.6 (95%CI: -14.0, -1.1) ms smaller for stroke than healthy participants (t = -2.30,  
p = 0.029, Table 3), while TC did not differ significantly between groups (95%CI: -21.2, 
3.5, t = -1.41, p = 0.169, Table 3). The third operationalization of the effect of irregular 
walking, comparing regular with irregular walking conditions in stroke participants, 
showed that the difference between methods for IC was 2.6 ms (95%CI: -4.9, -0.3) lower 
for the irregular than regular condition (t = -2.17, p = 0.030, Table 3). The difference 
between methods for TC was 2.2 ms (95%CI: -4.2, -0.1, t = -2.05 p = 0.040, Table 3).

Spatiotemporal parameters
Figure 3 shows the Bland-Altman-like plots for the spatiotemporal gait parameters 
averaged per subject (left panels) and on a stride-by stride basis (middle and right 
panels). The stride time difference between methods did not vary as a function of  
the value of the method itself in both healthy and stroke participants. Differences 
between methods for stride time were on average 0 ms, with low between-subject 
variance for all conditions in healthy participants (SD = 0.01 s) and 0.04 s during 
regular walking and 0.05 s during irregular walking in stroke participants (Table 4). 

In healthy participants, the difference between methods on stride time was not 
different between regular and irregular walking (t = 0.153, p = 0.878, Table 3), and not 
different between healthy participants and stroke participants during regular 
walking (t = -0.111, p = 0.912, Table 3). Also, no differences between methods were 
found between the regular and irregular walking condition on stride time in stroke 
participants (t = 0.618, p = 0.537, Table 3). Differences between methods for CoV of 
stride time did not significantly differ between regular and irregular walking in 
healthy participants (t = 1.189, p = 0.249, Table 5 and Figure 4), or between healthy 
and stroke participants during regular walking (t = -1.909, p = 0.089, Table 5 and 
Figure 4), or between regular and irregular walking conditions in stroke participants  
(t = -1.038, p = 0.330, Table 5). However, a larger mean CoV of stride time and stride 
length in the irregular trials, suggests that the proposed method to induce irregularity 
seemed to work.

Table 3. Statistical output of linear mixed regression models to compare irregular  
vs regular walking in healthy participants and in stroke participants, and comparison 
stroke vs healthy participants in regular walking.

Intercept 95%CI Coefficient 95%CI t-value* p-value*

Lower Upper Lower Upper

H
ea

lth
y, 

irr
eg

ul
ar

 
vs

 re
gu

la
r w

al
ki

ng

IC detection 1.502 1.293 1.712 0.248 0.217 0.279 15.762 0.000

TC detection -1.879 -2.223 -1.534 0.339 0.302 0.376 18.057 0.000

Stride time 0.000 -0.000 0.000 0.000 -0.000 0.000 0.153 0.878

Stride length -0.034 -0.049 -0.019 0.003 0.002 0.004 4.500 0.000

Stride velocity -0.033 -0.046 -0.019 0.004 0.002 0.005 5.951 0.000

St
ro

ke
 v

s h
ea

lth
y, 

re
gu

la
r w

al
ki

ng

IC detection 1.499 1.129 1.870 -0.755 -1.400 -0.111 -2.297 0.029

TC detection -1.878 -2.590 -1.166 -0.890 -2.124 0.345 -1.413 0.169

Stride time 0.000 -0.001 0.001 -0.000 -0.001 0.001 -0.111 0.912

Stride length -0.034 -0.047 -0.022 0.038 0.016 0.060 3.422 0.002

Stride velocity -0.032 -0.044 -0.021 0.034 0.014 0.054 3.313 0.003

St
ro

ke
, ir

re
gu

la
r v

s 
re

gu
la

r w
al

ki
ng

IC detection 0.876 -0.080 1.833 -0.256 -0.487 -0.025 -2.173 0.030

TC detection -2.746 -4.325 -1.166 -0.217 -0.424 -0.010 -2.050 0.040

Stride time -0.000 -0.002 0.002 0.001 -0.002 0.004 0.618 0.537

Stride length 0.003 -0.004 0.011 0.001 -0.002 0.005 0.652 0.515

Stride velocity 0.001 -0.006 0.007 0.002 -0.001 0.004 0.429 0.153

Linear mixed models were used to evaluate the performance of the algorithm in irregular walking compared 
to regular walking. In the comparison healthy irregular vs healthy regular walking, and in the comparison 
stroke irregular vs stroke regular walking, the regular walking trials were used as the reference with the 
difference between methods for each gait parameter as dependent measure, condition as fixed effect and 
participant ID as random effect. In the comparison stroke vs healthy in regular walking, the walking trials of 
the healthy participants were used as the reference with the difference between methods of each gait 
parameter as dependent variable, group (healthy vs stroke) as fixed effect and participant ID as random effect. 
IC: Initial contact, TC: Terminal contact. *Relate to the coefficient (not the intercept).
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was closer to zero for stroke patients compared to healthy participants (0.038 m, 
t = 3.422, p = 0.002, Table 3). The difference between methods for CoV of stride length 
was larger in irregular walking compared to regular walking (-0.44%, t = -4.198,  
p <0.001, Table 5). Differences between methods for CoV of stride length in stroke 
participants (0.7% higher in IMU vs OMCS) was not different from healthy participants 
during regular walking (0.2% lower in IMU vs OMCS; t = -1.186, p = 0.266, Table 5). 
There were also no differences found between methods for CoV of stride length in 
irregular walking compared to regular walking in stroke participants (t = -1.165,  
p = 0.278, Table 5).

Stride velocity in healthy participants was 0.03 m/s (SD = 0.04) lower when based on 
IMUs compared to OMCS (Table 4). In stroke participants, stride velocity difference 
between methods was 0.00 m/s (SD = 0.03, Table 4). Comparing regular vs irregular 
walking in healthy participants, resulted in smaller differences in regular walking 
(0.004 m/s, t = 5.951, p < 0.001, Table 3). Differences between methods were larger  
for healthy participants compared to stroke participants during regular walking 
(0.034 m/s, t = 3.313, p = 0.003, Table 3). 

Details of the statistical output can be found in Table 3 and Table 5. A table including 
the mean differences and SDs for each subject, for each walking condition can be 
found in the supplementary materials.

Figure 3. Bland-Altman analyses of the mean spatiotemporal parameters per condition in 
healthy regular (green ○), healthy irregular (blue Δ), stroke regular (pink ○) and stroke irregular 
(orange Δ) walking conditions. Middle panels are the Bland-Altman analyses in the healthy 
population in regular (green) and irregular (blue) walking on a stride-by-stride basis. Right 
panels are the Bland-Altman analyses in the stroke population in regular (pink) and irregular 
(orange) walking on a stride-by-stride basis. Note that the y-axis for means per trial is on a 
different scale as the plots on a stride-by-stride basis.
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1.251.0 1.5 1.75 2.00.75 2.25 2.5

Table 4. Mean and SD of the difference between methods (IMU vs OMCS) during 
treadmill walking on a stride-by-stride basis.

Healthy participants (n=20) Stroke participants (n=10)

Regular  
walking

Irregular  
walking

Regular  
walking

Irregular  
walking

N strides (total) 4577 4200 1671 1586

IC detection (ms) 15 [7] 17 [10] 10 [35] 9 [35]

TC detection (ms) -19 [12] -15 [12] -24 [34] -22 [35]

Stride time (s) -0.00 [0.01] 0.00 [0.01] -0.00 [0.04] 0.00 [0.05]

Stride length (m) -0.03 [0.04] -0.03 [0.05] 0.00 [0.06] 0.00 [0.04]

Stride velocity (m/s) -0.03 [0.04] -0.03 [0.04] -0.00 [0.03] 0.00 [0.03]

Differences were calculated as ‘IMU-based parameter – OMCS-based parameter’ and displayed as mean [SD]. 
IC: initial contact, TC: terminal contact.
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Overground walking
Spatiotemporal parameters per subject ranged between 0.94 and 1.28 (median = 
1.01) s for stride time, 1.18 and 1.64 (median = 1.40) m for stride length and 1.05 and 
1.70 (median = 1.36) m/s for stride velocity. Table 6 shows differences in gait event 
detection and spatiotemporal parameters between IMU-based and OMCS-based 
analysis during overground walking.

Post-hoc analysis
OMCS detected IC 0.03 s [LoA: -0.01; 0.07] and TC 0.01 s [LoA: -0.03; 0.05] after the 
force plates. See supplementary materials for full details of this analysis and 
histograms (Figure S1) of the mean differences.

Table 5. Statistical output of t-tests to compare difference between methods for 
variance (CoV) in stride time and stride length.
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Stride length -0.439 -0.657 -0.220 -4.198 0.000
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ng Stride time 0.994 -2.172 0.184 -1.909 0.089
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ng Stride time -0.513 -1.654 0.627 -1.038 0.330

Stride length -0.903 -2.691 0.885 -1.165 0.278

Paired samples t-tests were used to evaluate the performance of the algorithm in irregular walking compared 
to regular walking within healthy participants and within stroke participants. In these comparisons the 
regular walking trials were used as the reference. Unpaired t-tests (Welch two sample) were used to evaluate 
the performance of the algorithm in stoke participants compared to healthy participants in regular walking. 
In this comparison the walking trials of the healthy participants were used as the reference.

Table 6. Mean differences and SD between IMU-based and OMCS-based parameters 
during overground walking.

Healthy participants (n=20) Overground walking

N strides (total) 1426

IC detection (ms) -6 [19]

TC detection (ms) -40 [17]

Stride time (s) 0.00 [0.03]

Stride length (m) -0.08 [0.05]

Stride velocity (m/s) -0.08 [0.07]

Differences were calculated as IMU-based parameter – OMCS-based parameter’ and displayed as mean [SD].

Figure 4. Bland-Altman analyses of the variability of spatiotemporal parameters per trial in 
healthy regular (green ○), healthy irregular (blue Δ), stroke regular (pink ○) and stroke irregular 
(orange Δ) walking conditions.
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only 0.3 cm for stride length and 0.3 cm/s for stride velocity in healthy participants. 
Therefore, we concluded that temporal and spatial parameters were assessed with 
the same accuracy in irregular walking compared to regular walking.

To be able to use the gait algorithm in clinical populations, evaluation of the 
algorithm’s performance in irregular walking patterns due to pathology was an 
important aim of this study. In the stroke population, the mean error of the estimated 
stride length compared to OMCS was 0 cm and 0 cm/s for stride velocity. In previous 
research, the calculated error for stride length in people with irregular gait due to 
Parkinson’s disease was also lower than in healthy participants [25] (Parkinson’s 
disease group 8.5 cm vs. healthy peers 10 cm).

The higher accuracy in people with stroke compared to healthy participants was not in  
line with our hypothesis. One factor underlying a higher accuracy of spatial parameters  
in stroke participants might be the slower walking speed in this group compared to 
the healthy group. As stride length was calculated by double integration of the 
acceleration data, relatively small errors in event detection or timing of zero-velocity 
updates can cause inflated errors in spatial parameters. Consequently, lower walking 
speeds resulting in lower acceleration peaks are less affected by errors in gait event 
detection compared to faster walking speeds with higher acceleration. However,  
IC and TC event detection were highly accurate in healthy participants with low 
between-strides variance, at least partly contradicting this explanation. Therefore, a 
small error in the timing of zero-velocity updates seems most likely, as we did not 
validate the detection of the foot flat phase (TC to mid-swing of the contralateral leg). 
Additionally, between foot flat phases, a drift compensation based on a sigmoid 
curve is performed. This drift compensation might overestimate the actually 
measured drift, this results in subtracting too much of the acceleration leading to an 
underestimation of stride length and velocity. Exploring other drift compensation 
techniques might further improve the accuracy of the algorithm.

In addition to mean values of gait parameters, variability between the strides of an 
individual (CoV) is of clinical interest [27,28]. Variability of stride time could be 
accurately assessed with IMUs in both healthy participants and stroke patients. 
In contrast, lower accuracy was found in spatially dependent CoV parameters with 
the IMUs.

This study has some limitations meriting attention. First, all participants walked at 
their preferred gait speed, resulting in a different range of gait speeds between both 
groups. Therefore, we cannot distinguish the effect of walking slower from the effect 
of walking more irregularly. This could be evaluated by having healthy participants 

Discussion

The aim of this study was to evaluate the developed algorithm for gait assessment 
using IMUs on both feet and the trunk, for regular as well as irregular walking patterns. 
We found high accuracy of gait event detection, stride time, and stride time variability 
during regular and irregular walking in healthy participants compared to OMCS.  
In healthy participants, mean stride length and stride velocity were slightly under
estimated with 3 cm and 3 cm/s, respectively. However, the accuracy was much worse 
in several healthy participants, with errors increasing up to 13 cm and 13 cm/s, 
respectively. The algorithm’s accuracy did not substantially worsen for irregular 
walking compared to regular walking in healthy participants. Likewise, the irregular 
walking pattern that was observed in stroke participants resulted in similarly high 
accuracy of the algorithm.

The accuracy of our IMU-based algorithm on stride time in healthy participants was 
0±10 ms, which was comparable to previous research evaluating accuracy during 
regular walking with errors of 9±22 ms [25]. Regarding spatial parameters, previous 
validation studies with sensors on the feet have reported an average underestima-
tion of stride length between 2 and 12 cm in healthy participants [6,25,26]. In the 
study by Morris et al., an average underestimation of 10 cm with their IMU-based 
algorithm was reported, which increased to 18 cm with increasing stride length. This 
trend of increasing underestimation with increasing stride length, and thus increasing 
gait speed, was also seen in the current study. At gait speeds above 1.2-1.3 m/s, the 
underestimation of stride length increased to maximally 13 cm in one subject. 
Although this error is still smaller than as reported in Morris et al. [25], increasing 
errors with increasing gait speeds is a significant concern when applying foot-mounted 
IMU algorithms for the assessment of healthy gait. Caution should also be warranted 
when comparing groups with different gait speeds. When verifying these results for 
the overground trials, a slightly larger but still acceptable error of 8 cm compared to 
10 cm reported in previous literature was found [25].

In artificially induced irregular walking in healthy participants by irregularly spaced 
stepping targets, the algorithm’s accuracy was similar to regular walking. The higher 
mean CoVs of stride time and stride length in the irregular walking condition 
compared to the regular walking condition indicated that the irregular walking 
manipulation was successful. In contrast, the irregular walking condition in stroke 
participants slightly increased the CoV of stride time, but did not impact the CoV of 
stride length. No differences in the accuracy of stride time estimation were found 
between the irregular and regular walking conditions (0 ms) in both groups. Although 
significant, the differences in accuracy between irregular and regular walking were 
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walk at lower than comfortable speeds and people with stroke walk at higher gait 
speeds. A downside of this approach is that it might lead to unnatural gait patterns, 
reducing the ecological validity of the results. Additionally, we observed that even 
after a familiarization period of the self-paced mode, some participants had difficulty 
maintaining a constant comfortable walking speed during the regular walking 
condition. This most likely resulted in a higher CoV in stride length, time, and velocity 
in the regular walking condition than reported in the literature [29]. Secondly, we only 
focused on a limited number of spatiotemporal parameters among many of the 
potential gait characteristics reported in the literature [30,31]. The selected 
spatiotemporal gait parameters are the most crucial in the algorithm to assess 
spatiotemporal gait parameters. Additional parameters such as step time and double 
support time are typically derived from the identified gait events and parameters 
included in this study. Nonetheless, it could be valuable to analyze the accuracy and 
errors of other spatiotemporal gait parameters when these are used for research or 
clinical purposes. Thirdly, we designed our protocol to have equal walking duration 
for all participants and in each condition. Because participants walked with different 
walking speeds, stride length and time, different number of strides between subjects 
were recorded. It might be beneficial for future studies to standardize the number of 
measured strides. Lastly, verification that the IMU-based algorithm could also be 
used in overground walking was only performed in healthy participants. This was 
done to decrease the burden on stroke patients, as we had no reason to suspect 
different results for this analysis in stroke participants, but we cannot provide proof 
for this assumption.

Conclusions

Overall, the accuracy of the proposed IMU-based algorithm was high for temporal 
gait parameters in regular and irregular walking patterns in healthy and people with 
stroke, while there was room for improvement for spatially dependent parameters. 
Although general accuracy in irregular gait was as good as in regular walking, stride 
length and velocity errors in individual cases were substantial and beyond clinically 
relevant differences. Therefore, the IMU-based algorithm performs satisfactory for 
walking speeds up until 1.2 m/s. Caution should be applied when considering 
individual outcomes, groups walking at high gait speed, and when comparing groups 
with different walking speeds. Further development of algorithms is needed for these 
purposes.
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Supplementary materials
Post-hoc analysis: IMU-based and OMCS-based gait event detection 
against force plate-based gait event detection

Introduction
Two methods are frequently used in literature to identify gait events; one being the 
OMCS-based method as used in this study, the other is based on force plate data 
[1–4]. The benefit of OMCS-based gait event detection, is that multiple strides per 
stretch in the overground lab can be analyzed, against only one stride per stretch  
on force plates.

To maximize the amount of strides for analysis in the overground lab, and be 
consistent in the used methods, the IMU-based algorithm was validated against 
OMCS in both settings. Nevertheless, during all treadmill walking trials force data 
was collected by the embedded force plates of the GRAIL. To check the magnitude of 
the difference including limits of agreement (LoA) at 1.96 standard deviation in gait 
event detection between the OMCS-based method used in this study and force plate 
data as ground truth, post-hoc analysis was performed.

Methods
All code for this post-hoc analysis is included in the scripts available from: https://
github.com/SintMaartenskliniek/IMU_GaitAnalysis (Release ‘Validation study, tag 
v1.1.0’). Force plate data from all GRAIL trails was filtered by a forth order, zero shift 
Butterworth filter with cut-off frequency 20 Hz and down sampled to 100 Hz.  
Gait event detection was done based on a 10 Newton threshold. IC events were 
identified at the first instance the vertical force exceeded the threshold for at least  
0.4 seconds, while TC events were identified at the first instance the vertical force 
was less than the threshold for at least 0.4 seconds.

Not all gait events could be identified based on the force plate data (participants did 
not always place their right foot on the right force plate and their left foot on the left 
force plate). Therefore, it was assumed that if a gait event was detected by both force 
plates and OMCS or IMU-based algorithms, they would be within a 0.2 second time 
window. Gait events within this window were then compared on instance of detection 
by histograms of the difference.

Results
OMCS detected IC 0.03 s [LoA: -0.01; 0.07] and TC 0.01 s [LoA: -0.03; 0.05] after the 
force plates. IMU-based analysis detected IC 0.02 s [LoA: -0.06; 0.10] and TC 0.03 s 
[LoA: -0.01; 0.07] after the force plates. Histograms of the difference between these 
methods are shown in Supplementary Figure 1.
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Figure S1. Differences in IC (top panel) and TC (bottom panel) detection with IMU-based 
(orange) and OMCS-based (green) algorithms and force plate based gait event detection.
Histograms are on a stride-by-stride basis for all participants. Solid vertical lines indicate 
mean difference and dashed vertical lines indicate the 1.96*SD.
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Introduction

Gait is one of the most fundamental activities of daily life. Unsurprisingly, gait 
impairments negatively impact independent living and the quality of life of 
individuals [1]. Gait capacity is commonly described by the means and variability of 
spatiotemporal gait parameters during steady-state walking. While the mean gait 
speed is widely accepted as an indicator of overall gait capacity, the variability of 
spatiotemporal gait parameters is associated with dynamic balance [2,3]. However, 
to adequately quantify the measures of variability, a substantially higher number of 
steps needs to be analyzed than is typically recorded in overground gait labs using 
optical motion analysis [4]. Inertial measurement units (IMUs) can be used to record 
a multitude of steps per trial, with the additional advantage that they can be used 
outside the lab, in more ecologically valid settings and in real life [3,5]. However, as 
testing space in the clinic can be limited, gait assessments typically include back- 
and-forth walking, including turns. The acceleration and deceleration phases associated 
with these turns can substantially influence the mean and variability of spatiotemporal 
gait parameters [4]. Therefore, to characterize straight-ahead gait, only the strides  
in the steady-state portion of gait should be included for analysis, thus discarding  
the strides made in turns and during acceleration and deceleration phases. Although  
the validity of gait event detection and estimation of spatiotemporal gait parameters 
using IMUs has received ample attention [6–9], these studies did not evaluate how 
choices regarding the exclusion of strides in turns and periods of acceleration and 
deceleration affect spatiotemporal gait parameters during steady-state gait.

Stride-selection methods presented in the literature are based on two main methods. 
Either a fixed number of strides are excluded around turns or after starting [10], 
or strides are identified based on a certain relative threshold, e.g., minimum stride 
length [11]. As yet, it is unclear to what extent different methods to select strides 
affect the calculated means and variance of spatiotemporal gait parameters. 
Therefore, the aim of this study was to compare methods to select strides 
representative of steady-state, straight-ahead gait. Our first research question was: 
what is the effect of stride-selection methods on the means and variability of spatio
temporal gait parameters in tests including turns? The second research question 
was: how much do strides preceding and directly following the turns deviate from the 
steady-state portion of the walking trajectory? We analyzed these strides in more 
depth to understand the effect of acceleration and deceleration phases on the 
observed difference between selection methods. For this study, people with osteo
arthritis (OA) of the lower limb joints or joint replacement after OA were included. 
OA of the lower limb joints is a well-known cause of impaired gait capacity [12,13]. 
People with OA, for example, walk with a lower gait speed compared to their healthy 

Abstract

Different methods exist to select strides that represent preferred, steady-state 
gait. The aim of this study was to identify the effect of different stride-selection 
methods on spatiotemporal gait parameters to analyze steady-state gait.

A total of 191 patients with hip or knee osteoarthritis (aged 38–85) wearing inertial 
sensors walked back and forth over 10 m for two minutes. After the removal of 
strides in turns, five stride-selection methods were compared: (ALL) include all 
strides, others removed (REFERENCE) two strides around turns, (ONE) one stride 
around turns, (LENGTH) strides <63% of median stride length, and (SPEED) strides 
that fall outside the 95% confidence interval of gait speed over the strides included 
in REFERENCE. Means and SDs of gait parameters were compared for each trial 
against the most conservative definition (REFERENCE).

ONE and SPEED definitions resulted in similar means and SDs compared to REFERENCE, 
while ALL and LENGTH definitions resulted in substantially higher SDs of all gait 
parameters. An in-depth analysis of individual strides showed that the first two 
strides after and last two strides before a turn were significantly different from 
steady-state walking.

Therefore, it is suggested to exclude the first two strides around turns to assess 
steady-state gait.
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the identified mid-swing [14]. In case multiple peaks were identified, the peak with 
the smallest angular velocity was considered the true terminal contact. To identify 
turns, the angular velocity of the IMU on the lumbar level was rotated to the earth 
frame, after which the maxima were detected around the absolute vertical axis [15]  
(Figure 3). The start of a turn was defined as the last instant that the absolute angular 
velocity around the vertical axis was <5 °/s. The finish of each turn was defined as the 
last instant at which the absolute angular velocity was >5 °/s [15]. Linear velocity was 
calculated by integrating the free acceleration of the IMUs on the feet. To eliminate 
drift in the linear velocity and resulting position estimation, zero velocity updates 
were performed during mid-stance [16–18]. Position estimation was performed by 
integrating the zero-velocity updated linear velocity. All resulting spatiotemporal 
parameters were calculated on a stride-by-stride basis. The stride time was calculated 
as the time between two consecutive initial contacts. The gait speed was calculated 
as the average velocity between two consecutive initial contacts. The stride length 
was calculated as the absolute difference in position between a terminal contact and 
the following initial contact.

Five definitions to include strides representative for steady-state gait were compared. 
Before applying any definition, all strides made within turns were removed. Definitions  
are the following:
1.	 ALL: Include all strides;
2.	 REFERENCE: Remove first 2 strides after, and last 2 strides before turn [10];
3.	 ONE: Remove first stride after, and last stride before turn;
4.	 LENGTH: Filter out strides <63% of median stride length [11];
5.	 SPEED: Calculate mean and 95% confidence interval (95% CI) of gait speed over 

the strides included in REFERENCE, then include all strides within this 95% CI.

peers [13], but without the more severe impairments, such as freezing of gait or drop 
foot related to neurological diseases.

Materials and methods

Subjects
Participants were recruited from the outpatient clinic of the orthopedic department 
of the Sint Maartenskliniek between October 2020 and October 2021. They were 
invited to participate if they had visited the clinic for end-stage knee, hip or ankle OA 
confirmed by an orthopedic surgeon, or after total knee or hip arthroplasty (TKA or 
THA) due to OA. Participants had to be at least 18 years old. People were excluded  
if they had gait or balance problems caused by anything other than OA. Informed 
consent was obtained from each participant prior to testing. A total of 191 people 
participated in this study, and eight people participated twice; before and after joint 
replacement surgery. This resulted in a total of 199 measurements that were analyzed.

Gait Assessment
Participants were equipped with four IMUs (Xsens Awinda, Enschede, the Netherlands) 
placed on both feet (dorsum side of the foot), the upper part of the sternum, and the 
lumbar level (L4/L5) of the trunk. Subsequently, participants walked back and forth 
over 10 m in a broad hallway in the clinic, performing 180° turns after each 10 m 
stretch (Figure 1). They were instructed to walk for two minutes at a self-selected, 
comfortable pace and to turn beyond the 10 m mark (line). No specific instructions 
were given on how to turn (e.g., pivot turn or taking multiple steps). Measurements 
were captured with MTManager software suite (version 2019.2) at 100 Hz.  
The planning, conduct and reporting of this study was in line with the Declaration 
of Helsinki. The study protocol was approved by the institutional review board.

Stride Identification
The identification of initial contact [7] and terminal contact [14], as well as calculating 
the resulting stride-by-stride spatiotemporal parameters [9] and detection of turns [15] 
was performed using previously validated algorithms [7,9,14,15]. First, the raw data  
of the IMUs attached to the feet were filtered by a second-order low-pass Butterworth 
filter (15 Hz cut-off frequency for angular velocity, and 17 Hz cut-off frequency for 
acceleration) [7]. Next, mid-swing was identified at the local maximum (clockwise 
direction) of the filtered angular velocity around the mediolateral axis (flexion–
extension movement), directly followed by the zero-crossing (negative slope) 
corresponding to initial contact [7] (Figure 2). Terminal contact was identified at  
the peak in the filtered, vertical free acceleration of the IMUs on the feet before 

Figure 1. Set-up for 2 min walking test. Participants were instructed to turn after the 10 m 
marks (thick, black lines), but no specific instructions on how to turn were given (e.g., pivot turn 
or taking multiple steps). Orange and red indicate the first and second foot strike after a turn 
(blue) and the last and second to last foot strike before the turn start, respectively.
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Results

Subject Characteristics
Participants were aged between 38 and 85 years (mean ± SD: 63.1 ± 9.0), and 110 were 
female and 81 male. In total, 93 measurements were performed in end-stage OA, and  
106 were after joint-replacement surgery. See Table 1 for all participant characteristics.

Spatiotemporal Gait Parameters
Comparison between Selection Definitions
The average number of selected strides per trial ranged from 108 (REFERENCE) to 160 
(ALL), while the average amount of turns per trial was 10 (range 1 to 19). Means and 
SDs of gait speed, stride length and stride time for definition REFERENCE, and the 
mean differences and associated 99% CI of each definition with REFERENCE are  
shown in Figure 4. Mean gait speed did not differ from REFERENCE for any definition. 
The SDs of gait speed of all definitions were different compared to REFERENCE, ranging 

Statistical Analysis
For each definition, the means and standard deviation (SD) of gait speed, stride length  
and stride time over strides were calculated for each trial using Python’s numpy 
(v1.22.0) package. Definitions were compared against the most conservative 
definition, REFERENCE, using mean differences and their 99% confidence interval 
(99% CI). For the in-depth analysis, the first four strides after and before a turn were 
compared with the middle section of the walking trajectory using mean differences 
and their 99% CI. The middle section of the walking trajectory consists of the fifth 
stride after the turn, up to and including the fifth stride before the next turn. 
To explore if age and gait speed differences between participants affected the 
acceleration and deceleration phases, the research sample was split into tertiles 
based on age (youngest 33%, middle 33% and oldest 33%) and gait speed achieved in 
the middle section of the walking trajectory speed (fastest 33%, middle 33% and 
slowest 33%) (Appendix B). Statistical analysis was performed by shared control 
mean difference statistical tests (ordered groups ANOVA) of Python’s dabest (v0.3.1) 
package [19].

Figure 2. Stride identification was performed based on the filtered mediolateral angular 
velocity (green graph) and vertical free-acceleration (orange graph) signal features of the foot 
sensors. Terminal contact was determined at the local peak in vertical acceleration (green 
triangle pointing up), mid-swing at the peak in medio-lateral angular velocity (cross), and initial 
contact at zero-crossing of the medio-lateral angular velocity (red triangle pointing down).

Figure 3. Turns (grey areas) were identified at the local maxima of the absolute angular 
velocity (rotated to the earth frame) around the vertical axis (green z-axis) of the lumbar 
sensor (top graph) [11]. The start of a turn was defined as the last instant that the absolute 
angular velocity around the vertical axis was <5 °/s. The finish of each turn was defined as the 
last instant at which the absolute angular velocity was >5 °/s [11].
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from −0.00 (99% CI: −0.01, −0.00) m/s for SPEED to 0.04 (99% CI: 0.04, 0.05) m/s for 
ALL. Stride length did not differ from REFERENCE for any definition. The SD of stride 
length differed from REFERENCE for all definitions except SPEED, ranging from 0.00 
(99% CI: 0.00, 0.01) m for ONE to 0.03 (99% CI: 0.03, 0.04) m for ALL. Definitions ALL and 
LENGTH resulted in a significantly higher stride time of 0.02 (99% CI: 0.00, 0.04) s than 
REFERENCE. The stride time derived from ONE and SPEED did not significantly differ 
from REFERENCE. The SDs of stride time of all definitions were different compared to 
REFERENCE, ranging from 0.00 (99% CI: 0.00, 0.01) s for SPEED to 0.06 (99% CI: 0.05, 
0.07) s for ALL. Table A1 of Appendix A includes all means and SDs of gait speed, stride 
length, stride time and the number of strides included per definition, as well as their 
differences with REFERENCE.

In-Depth Analysis of Strides around Turns vs. Middle Section
Figure 5 shows the average gait speed, stride length and stride time over all subjects 
of the first 4 strides after a turn and the last 4 strides before a turn. When comparing 
the 99% CIs, substantially decreased values for gait speed in the first two strides 
following the turn were found compared to the middle portion of walking. This was 
the result of higher stride times and—although to a lesser extent—lower stride 
length. The subsequent third stride showed some overlap with the middle part. In the 
strides before a turn, a similar, but reversed, trend was seen but with smaller mean 
differences, and overlap with steady-state gait was already visible for the second 
stride before the turn. Mean differences of SDs showed strikingly similar patterns. 
Table A2 of the Appendix A includes all means and SDs of gait speed, stride length and 
stride time for each of the four strides around a turn and the strides in the middle 
section of the walking trajectory, as well as their differences with the strides in the 
middle section of the walking trajectory. No differences in mean and SD of the gait 
speed between the three age groups and between the three speed groups were found 
(Appendix B). 

Table 1. Participant characteristics.

Participant Characteristics

N total 1 191

Male/female (N) 81/110

Age (mean ± SD years) 63.1 ± 9.0

End-stage OA/post surgery (N) 1 93/106

Hip/Knee/Ankle OA (N) 71/117/3

Height (mean ± SD cm) 173.8 ± 9.7

Weight (mean ± SD kg) 85.4 ± 15.8

1 Eight participants had two measurements (pre- and post-surgery). OA: osteoarthritis.

Figure 4. Scatterplot of means and SD of gait speed, stride length and stride time for definition 
REFERENCE, and the mean difference plots for each definition with REFERENCE, including the 
average number ± SD of selected strides per trial for each definition (N).
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Discussion

Unsurprisingly, our definition analysis showed that excluding strides based on 
different methods affected the means and variance of the spatiotemporal gait 
parameters. Excluding only the first and last stride around each turn (ONE), or through 
speed-based outlier analysis (SPEED), yielded highly similar means and variance of 
spatiotemporal gait parameters compared to the more conservative method, 
excluding two strides around each turn (REFERENCE). Including all strides in the 
straight-ahead portion of gait (ALL) or all strides that are at least 63% of the median 
stride length (LENGTH) seemed too lenient, including too much of the acceleration 
and deceleration phases. The in-depth analysis indicated that the first two strides 
after and last two strides before a turn were different from the steady-state walking 
period. Furthermore, strides after the turn (e.g., acceleration phase) had a more 
significant effect on the calculated spatiotemporal parameters compared to the 
strides before the turn (deceleration phase).

The absolute differences between the means of the spatiotemporal gait parameters  
of the five methods were very limited. The maximum mean deviation was 0.03 m/s in 
gait speed, 2 cm in stride length, and 20 ms in stride time (ALL). Nonetheless, the first 
stride after the turn was on average 0.17 m/s slower compared to the middle section,  
while the second stride before and the first stride after a turn were also considerably 
slower: 0.08 m/s. This suggests that these deviating strides had a limited effect on  
the mean, likely due to the relatively high number of strides in the middle section  
(n = 108 strides) compared to the number of first and second strides around turns  
(n = 10 turns). Importantly, it should be noted that the effect of including strides 
around the turn may be different when using other, mainly shorter, walking 
trajectories than our 10 m walkway.

In contrast to the means, marked differences between selection methods were 
observed for the variance of the gait parameters. To illustrate, including all strides in 
the analysis doubled the SD of gait speed from 0.04 m/s to 0.08 m/s. Although the ONE 
and SPEED methods resulted in almost similar SD values (for example ~0.01 m/s mean 
difference for gait speed), the 99% CI of the mean difference was still above 0, 
suggesting a consistent effect on the variance. Researchers and clinicians interested 
in the variability measures of gait should therefore proceed with extra caution in 
their decision making regarding the inclusion of strides for the analysis of gait.

The SPEED and LENGTH methods in our analysis could be seen as a form of outlier 
analysis. As definition LENGTH included almost all strides in the straight-ahead 
portion, LENGTH revealed similar results to ALL and seemed too lenient. The SPEED 

Figure 5. Subplots of the means and SDs of the strides in the middle section of the walking 
trajectory, and the mean differences and associated 99% CI of the first 4 strides around a turn. 
The first 4 strides after a turn show increasing speed and stride length with decreasing stride 
time. The last 4 strides before a turn show decreasing speed and stride length with increasing 
stride time. The difference between these strides with the mean gait speed, stride length and 
stride time of the middle section of the walkway are plotted in the lower subplots.
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This study includes some limitations that merit attention. First, the study population 
was restricted to people with OA in the lower extremities. Even though a large data 
set of 199 measurements was used, caution should be exercised when translating 
these results to other groups with gait impairments, as also laid out above. Secondly, 
various components of the algorithm for gait analysis were validated in previous 
studies [7,9,14,15], but a validity study for the entire algorithm for this set-up is still in 
progress (with promising results). Thirdly, only basic spatiotemporal gait parameters 
were analyzed. The effect of stride selection on other kinematic or non-linear 
dynamic measures warrants investigation in future studies.

In conclusion, our analyses suggest that the first two strides during the acceleration 
and last two strides during the deceleration phases around turns should not be 
included. Nevertheless, the specific aims of the gait assessment and available test 
conditions should guide the decision on which selection method to use to select 
strides representative of the preferred, steady-state gait.

definition resulted in very similar outcomes as ONE and REFERENCE, but with a higher 
number of strides per trial included. A potential downside of these outlier analyses is 
that strides during the steady-state gait are excluded. This can be the case in patients 
with high variability in their gait pattern, for example, due to freezing of the gait in 
Parkinson’s disease. Due to the high variability, an inappropriate number of strides 
might get identified as outliers and as such get discarded by these methods, even 
though these strides might be highly interesting, and exclusion could be problematic. 
Additional data analysis on a group with a higher variability in their gait pattern is 
recommended to determine the effect of the different methods on the variance of 
spatiotemporal gait parameters.

Our in-depth analysis of the four strides before and after each turn showed differences  
in the first two strides around each turn compared to the middle section of the 
trajectory. Furthermore, the acceleration phase after a turn seems to affect the 
spatiotemporal gait parameters more than the deceleration phase before a turn. It 
should be noted that the ability to accelerate during gait initiation or decelerate to 
accommodate turning can be impacted by gait impairments due to age-related 
deficits. Muir et al. reported that adults over 80 years old needed more steps to reach 
their steady gait speed compared to the younger adults.[10]. Besides age-related gait 
difficulties, a number of factors can impact the ability to accelerate during gait 
initiation, or deceleration before a turn, including pain or motor problems stemming 
from neurological or musculoskeletal diseases. Almost without exception, such 
impairments result in lower gait speed. To test if age-related or other factors impacting 
gait speed confounded our results, we compared subgroups regarding age and gait 
speed. This supplementary analysis did not provide evidence that age or factors 
affecting gait speed impacted the ability to accelerate or decelerate (Appendix B). 
Nonetheless, as our sample size was restricted to individuals with OA, we cannot rule 
out that these findings do not translate to people with more severe gait impairments, 
such as in people after stroke or with Parkinson’s disease.

As mentioned above, the influence of excluding more or less strides around turns is 
also dependent on how many strides are collected as part of the steady-state gait 
(i.e., the included strides). This number depends on the length of the walkway, the 
total testing time, and gait speed of an individual. To illustrate, excluding two strides 
at both ends (REFERENCE) of a ten-meter walkway will leave approximately six meters 
for steady-state gait. As the stride length in this study was 1.12 m on average, this 
would result in the inclusion of five strides per leg on average per stretch of the 
trajectory. In settings where shorter walkways are used, assessors could estimate in 
advance how many stretches would be needed to obtain the number of strides 
necessary for their specific research or clinical purpose.
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Table A2. Mean [99% CI] of gait speed, stride length, and stride time of the first  
four strides after and before a turn, and the middle section of the walking trajectory.  
Included are the difference (diff.) of these strides with the middle section.
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Mean gait speed (m/s) 1.02
[0.99; 1.05]

0.85
[0.82; 0.88]
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0.94
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Appendix B. Analysis for Impact of Age and Gait Ability

Appendix B1. Methods
To explore if stride-selection definitions should be different depending on age or 
difficulty, we analyzed the acceleration and deceleration phases for different age and 
gait speed groups. We split the research sample into tertiles based on age and on gait 
speed, as achieved in the middle section of the walking trajectory. The first four 
strides after a turn and last four strides before a turn were compared to the middle 
section of the walking trajectory using mean differences and their 99% CI. The middle 
section of the walking trajectory consisted of the fifth stride after the turn, up to and 
including the fifth stride before the next turn. In each subgroup, we performed shared 
control mean difference statistical tests (ordered groups ANOVA) of Python’s dabest 
(v0.3.1) package [19].

Appendix B2. Results
The results of the mean and SD of gait speed for the different age groups for the first 
strides after a turn, and the last strides before turning are presented in Figures A1 and 
A2. Results of the mean and SD of gait speed for the different speed groups are 
presented in Figures A3 and A4. The mean differences between the first strides after 
and last stride before a turn and the middle section were very similar between age 
groups and speed groups. This was true for the mean of gait speed as well as the SD of 
gait speed. Similar results were found for the stride time and stride length.

Figure A1. Mean gait speed of the different participants during the walking trajectory, and the 
mean differences and associated 99% CI of the first and last 4 strides around a turn. The top 
subplot includes data of the young age group, the middle subplot, the middle age group, and the 
bottom subplot, the older age group.
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Figure A2. SD of the different participants during the walking trajectory, and the mean 
differences and associated 99% CI of the first and last 4 strides around a turn. The top subplot 
includes data of the young age group, the middle subplot, the middle age group, and the 
bottom subplot, the older age group.

Figure A3. Mean gait speed of the different participants during the walking trajectory, and the 
mean differences and associated 99% CI of the first and last 4 strides around a turn. The top 
subplot includes data of the slow gait speed group, the middle subplot of the medium gait 
speed group and the bottom subplot of the fast gait speed group.
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Figure A4. SD of the different participants during the walking trajectory, and the mean 
differences and associated 99% CI of the first and last 4 strides around a turn. The top subplot 
includes data of the slow gait speed group, the middle subplot of the medium gait speed group 
and the bottom subplot of the fast gait speed group.
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Introduction

Stroke survivors commonly face challenges related to impaired balance and gait, 
often attributed to diminished foot elevation and inadequate forward propulsion [1]. 
These challenges significantly increase the risk of falls and result in decreased gait 
speed [2,3], negatively impacting daily activities and overall quality of life [4]. 
Therefore, effectively retraining foot elevation and forward propulsion is a critical 
aspect of gait rehabilitation therapy [5]. During in-clinic therapy, therapists provide 
valuable feedback to patients to enhance these functions to further improve their 
gait pattern. Given that stroke survivors commonly experience not only motor 
impairments but also sensory deficits [6], this feedback is of utmost importance for 
successful rehabilitation. However, once patients are discharged from clinical care, 
they no longer receive feedback on their gait pattern during home-based training.

One potential solution is to integrate inertial measurement units (IMUs) for real-time 
feedback within home-based training. Since reduced foot elevation and insufficient 
forward propulsion are major factors contributing to gait problems in stroke [7,8], 
outcome parameters for feedback assessed with IMUs should be related to these 
impairments. Reduced foot elevation often results from weakness in the ankle 
dorsiflexors and is often characterized by toe landing rather than heel strike [7]. 
Therefore, the ankle angle or foot strike pattern (forefoot, midfoot, or rearfoot) could 
be used to train foot elevation. Previous research has demonstrated that IMUs can 
accurately estimate lower limb kinematics and spatiotemporal parameters [9–12]. 
Although the insights offered by lower limb joint angles are valuable [7,8], at least two 
sensors are needed to measure the angles of one joint, one on the proximal and one 
on the distal segment [11]. On the other hand, previous research on running kinematics 
revealed that a single IMU on the foot was able to distinguish between foot strike 
patterns (forefoot, midfoot, and rearfoot) [13,14]. Therefore, IMUs have the potential 
to offer valuable feedback to people with stroke on the foot strike angle (FSA),  
the angle formed between the foot and the walking surface upon initial contact (IC).

Besides feedback on the FSA, feedback on forward propulsion could also be useful for 
stroke survivors during exercise performance at home. However, IMUs cannot 
measure force directly, making the quantification of forward propulsion challenging 
through this modality [15]. Therefore, it is interesting to study if there are indicative 
gait characteristics for forward propulsion that can be measured with an IMU. It is 
generally thought that increasing forward propulsion leads to a higher gait speed 
with larger strides, resulting in altered kinematics of the foot and lower leg such as an 
increased angular velocity of the foot and a larger shank-to-vertical angle upon 
terminal contact (TC) [7,8,12,16–18]. Therefore, changes in foot and shank kinematics 

Abstract

Effective retraining of foot elevation and forward propulsion is a critical aspect of gait 
rehabilitation therapy after stroke, but valuable feedback to enhance these functions  
is often absent during home-based training.

To enable feedback at home, this study assesses the validity of an inertial measurement 
unit (IMU) to measure the foot strike angle (FSA), and explores eight different 
kinematic parameters as potential indicators for forward propulsion. Twelve 
people with stroke performed walking trials while equipped with five IMUs and 
markers for optical motion analysis (the gold standard). The validity of the 
IMU-based FSA was assessed via Bland–Altman analysis, ICC, and the repeatability 
coefficient. Eight different kinematic parameters were compared to the forward 
propulsion via Pearson correlation. Analyses were performed on a stride-by-stride 
level and within-subject level.

On a stride-by-stride level, the mean difference between the IMU-based FSA  
and OMCS-based FSA was 1.4 (95% confidence: −3.0; 5.9) degrees, with ICC = 0.97, 
and a repeatability coefficient of 5.3 degrees. The mean difference for the within- 
subject analysis was 1.5 (95% confidence: −1.0; 3.9) degrees, with a mean 
repeatability coefficient of 3.1 (SD: 2.0) degrees. Pearson’s r value for all the studied 
parameters with forward propulsion were below 0.75 for the within-subject 
analysis, while on a stride-by-stride level the foot angle upon terminal contact 
and maximum foot angular velocity could be indicative for the peak forward 
propulsion.

In conclusion, the FSA can accurately be assessed with an IMU on the foot in people 
with stroke during regular walking. However, no suitable kinematic indicator for 
forward propulsion was identified based on foot and shank movement that could  
be used for feedback in people with stroke.
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history of orthopedic or neurologic disorders (excluding stroke) that could affect gait  
or balance, had undergone surgery to correct drop foot, or were unable to perform 
any ankle flexion–extension. All participants gave their written informed consent 
prior to participation.

The study protocol was in line with the Declaration of Helsinki and was granted an 
exemption by the Dutch Medical Scientific Research Act (WMO) from ‘METC Oost-
Nederland’ (identification number: 2021-13295).

Materials
Participants were equipped with five IMUs (MTw Awinda, Movella, Enschede, The 
Netherlands) attached to the dorsal side of both feet, the anterior aspect of their 
shanks, and the lower back (L4/5), along with 20 reflective markers for the OMCS. 
Reflective markers were placed according to the VICON plug-and-gait lower body 
model [20]. MT Manager software suite version 2019.2 was used for the data capture 
of the IMUs. Participants walked on the GRAIL (Gait Real-time Interactive Analysis 
Lab, (Motek Medical, Amsterdam, The Netherlands)), an instrumented treadmill with  
an eight-camera OMCS (VICON, Oxford, UK), embedded force plates (Motek Medical, 
Amsterdam, The Netherlands), and a wide (180°) circular screen in front of the 
treadmill, creating a virtual environment. The IMU and OMCS both recorded at a 
sample frequency of 100 Hz, while the force plates operated at 1000 Hz. All systems 
were time-synchronized by a high-low pulse, with the OMCS serving as master.

Measurements
After a familiarization period, participants performed five walking trials on the GRAIL.  
The first and last trials involved self-paced regular walking, where participants had 
control over the speed of the treadmill by positioning themselves at the front 
(to accelerate) or at the back (to decelerate) of the belt [21]. Data were captured for 
two minutes starting when participants indicated that they were at a comfortable 
walking speed. Trials two to four introduced variability in the FSA and anterior–
posterior propulsion by providing feedback on either their FSA, propulsion, or both 
simultaneously. Feedback was provided visually via a vertical slide bar on the GRAIL’s 
screen, with the slide moving upwards to the green end or downwards to the red  
end based on the participant’s performance. The second and third trials were 
randomized across subjects with feedback on either the FSA (based on OMCS data) or 
propulsion (based on the force plate data). During the fourth trial, participants received 
feedback on both parameters. At the start of each feedback trial, participants walked  
10 strides without feedback. The GRAIL system calculated their regular FSA and 
propulsion, followed by 2 min of walking with feedback, during which data were 
captured. All measurements and visual feedback were embedded in a custom-built 
GRAIL application.

might be indicative of the generated forward propulsion. Pieper et al. [12] found 
support for this idea via a strong correlation between peak shank acceleration and 
peak forward propulsion in healthy individuals, both at individual and group levels. 
Although Pieper et al. mimicked pathological gait patterns by imposing unilateral 
movement constraints on the ankle and knee joint, it is unknown if the correlation 
holds true in pathological gait (e.g., stroke survivors).

The present study has two objectives: (1) to validate the accuracy of the IMU-derived 
FSA in individuals with stroke against the gold-standard optical motion capture 
system (OMCS), and (2) to identify IMU-derived parameters that are indicative of 
forward propulsion in individuals with stroke. We hypothesized that the FSA could be 
measured with high accuracy (a deviation from the gold standard of <5 degrees), 
based on previous work regarding the shank angle, which reached a mean difference 
of 0.7 degrees with a repeatability coefficient of 4.2 degrees compared to that of  
the OMCS [10]. Regarding the second aim, we anticipated that several foot and  
shank kinematic variables during the gait cycle would exhibit a moderate correlation 
(Pearson correlation coefficients ranging from 0.5 to 0.75) with forward propulsion. 
Based on the general belief expressed in the literature that decreased forward 
propulsion leads to altered gait kinematics, decreased gait speed, and shorter stride 
lengths [7,8,12,16–19], we measured the foot and shank angle upon TC, the maximum 
angular velocity and angular acceleration during the stance phase (IC to TC) of both 
the foot and shank, the maximum shank linear acceleration, and the stride length 
with the gold standard (OMCS), and evaluated these parameters as indicators for the 
actual forward propulsion. These parameters were chosen based on the previously 
found promising results for the shank linear acceleration [12], gait speed [12,18],  
stride length [17,18], and peak angular velocity of the lower limb segments [18,19],  
and their potential to be derived from only a single IMU. Finally, the same metrics 
were calculated with the IMU system to verify that the IMU system reaches similar 
correlations between these metrics and the forward propulsion.

Materials and methods

Participants
Twelve participants were recruited between January 2023 and June 2023 from 
physiotherapy practices in and around Nijmegen, as well as from social media groups 
for stroke survivors. Participants were eligible when they had experienced a stroke  
at least 6 months prior, were at least 18 years old, had unilateral motor deficits,  
and could walk for at least 5 min without assistive devices. Individuals were excluded  
if they lacked a sufficient cognitive ability to understand basic instructions, had a 
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is perpendicular to this plane. Figure 1 shows a schematic illustration of the 
experimental setup.

The foot segment was defined between the position of the toe and heel markers from  
the OMCS data (Equation (1)), after which the foot angle during the gait cycle was 
calculated in accordance with Equation (2). During the foot flat phase, the foot angle 
was considered to be zero degrees. Therefore, the foot angle was adjusted by 
subtracting the mean foot angle measured during the mid-stance of the first 10 
strides (Equation (2)). Subsequently, the foot angle was converted from radians into 
degrees in accordance with Equation (3).

Foot segment OMCS = position TOE MARKER − position HEEL MARKER, (1)

Data Processing
IMU data captured by MT Manager software (2019.2) included angular velocity and 
acceleration data in the sensor frame, acceleration in the earth frame, and orientation  
in a quaternion and Euler angle format. OMCS data were captured by VICON Nexus 
software (version 2.4). All further data processing and analyses were performed in 
Python 3.10.

A second-order low-pass Butterworth filter was applied to the angular velocity 
(cut-off frequency of 15 Hz) and acceleration data (cut-off frequency of 17 Hz) of the 
IMUs [22,23]. OMCS data were similarly filtered using a second-order low-pass 
Butterworth filter with a 15 Hz cut-off frequency. Force plate data were filtered using 
a fourth-order low-pass Butterworth filter with a 20 Hz cut-off frequency [24].

All of the code for data processing and analysis is available at the following link: 
https://github.com/SintMaartenskliniek/MovingReality (Release: “Validation study”, 
tag: “v1.0.0”, date: 6 January 2024).

Data Analysis
Each trial had a data recording time of 120 s. Data recording started 10 s after initiating 
the trial to exclude the initial acceleration phase to reach the comfortable walking 
speed. Data recording was stopped before the participant began decelerating to  
end the trial.

For the OMCS data, gait events were determined based on the validated method of  
Zeni et al. [24]. This method identifies IC as the instant when the velocity vector in the 
anterior–posterior direction of the heel marker crosses zero in the posterior direction. 
TC corresponds to the instant where the velocity vector in the anterior–posterior 
direction of the toe marker crosses zero in the anterior direction. For IMU data, 
IC events were identified at the instant of the first zero-crossing of the angular 
velocity around the mediolateral axis after mid-swing (maximum angular velocity 
around the mediolateral axis) [23]. TC events were identified at the peak vertical 
acceleration between mid-swing events (maximum angular velocity around the 
mediolateral axis) [23]. The foot flat phase, when the foot was flat on the walking 
surface, was identified between TC and the mid-swing of the contralateral side.

The OMCS global coordinate system was defined with the z-axis aligned to the 
vertical direction, the y-axis aligned to the walking direction, and the x-axis 
perpendicular to this plane. The IMUs used in this study also provide acceleration  
in the global frame. The IMU global frame is defined such that the x-axis is pointing  
to the magnetic north, the z-axis is aligned with the gravity direction, and the y-axis  

Figure 1. Schematic representation of the measurement setup. Note the grey optical markers  
at the toe and heel of the feet, defining the foot segment, as well as the markers at the knee and 
ankle, defining the shank segment. {SF} represents the local sensor frame of the IMU, {GFOMCS} 
represents the global frame of the OMCS system, and {GFIMU} represents the global frame of  
the IMU system.
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normalization (Equation (6) and Figure 3) [25]. Second, forward propulsion has been 
defined as the maximum value of the anterior–posterior GRF during each push-off 
(Equation (7)).

Forward propulsion AUC = 

with dt = 1/sample frequency, TC = terminal contact,  
BPT = breaking-to-propulsion transition, GRF = ground reaction force,  

and AP = anterior-posterior,

(6)

Forward propulsion peak = maximum ( ),

with GRF AP direction for each breaking-to-propulsion transition  
until terminal contact

(7)

Eight parameters were identified as possible indicators for forward propulsion: the 
foot and shank angle upon TC, the maximum angular velocity and angular acceleration 
during the stance phase (IC to TC) of both the foot and shank, maximum shank linear 
acceleration, and the stride length. The calculation of the foot angle over time is 
described above for both systems. For each gait cycle, the foot angle upon TC was 
calculated. For OMCS data, the shank angle over time was calculated in accordance 

Foot angle OMCS =
 

(2)

Foot angle OMCS = 
(foot angle OMCS − mean (foot angle OMCS mid-stance of stride 1 to 10)) × 180/π,

(3)

Finally, the foot strike angle was determined for each IC event based on the OMCS 
event algorithm (Equation (4)):

Foot strike angle OMCS, IMU = foot angle OMCS, IMU at IC, (4)

For IMU data, the Euler angles directly retrieved from the sensor were used as the 
estimated foot angles, with the Euler pitch angle corresponding to the foot angle of 
interest. Importantly, we assumed that the sensor axes were aligned with the axes of 
the foot segment. The foot angle as measured with the IMU is tilted due to attachment  
to the dorsal side of the foot (see Figure 2). This was corrected by subtracting  
the mean foot angle measured during the foot flat phase of the first 10 strides in 
accordance with Equation (5), considering the foot angle during the foot flat phase  
to be zero degrees. Finally, the foot strike angle was determined as the foot angle 
upon IC, for each IC event based on the IMU event algorithm (Equation (4)).

Foot angle IMU = (foot angle IMU − mean (foot angle IMU foot flat of stride 1 to 10)), (5)

For our second aim, the parameter of interest was forward propulsion. In the 
literature, two main approaches have been used to quantify this parameter. First, 
forward propulsion has been defined as the area under the curve (AUC) of the 
measured anterior–posterior ground reaction force (GRF) during each push-off [25]. 
This involves the numerical integration of the GRF in the anterior–posterior direction 
from the breaking-to-propulsion transition until TC is observed with bodyweight 

Figure 2. The measured IMU-based foot angle (foot angle + α) corrected with the mean foot 
angle (α) during the foot flat phase of the first 10 strides, to consider the foot angle during the 
foot flat phase to be zero degrees.

Figure 3. Forward propulsion measured by the area under the curve from the breaking-to-
propulsion transition until TC, indicated with green. Peak forward propulsion, indicated by x, 
was defined as the maximum value from the breaking-to-propulsion transition until TC.

α

foot angle + α

foot angle 

α
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angular velocity, maximum foot angular acceleration, maximum shank angular 
acceleration, maximum shank linear acceleration, and stride length), the AUC and 
peak forward propulsion were calculated. This analysis was performed for both the 
OMCS and IMU system. This dual approach allowed us to evaluate the potential of 
these parameters to serve as indicators for forward propulsion (AUC and peak) based on 
the gold-standard method OMCS, and to confirm the IMU’s ability to serve the same 
purpose. Both ICC and Pearson correlation values were interpreted as weak (<0.5), 
moderate (0.5–0.75), good (0.75–0.9), and excellent (>0.9) reliability and correlation 
[26]. A parameter was considered a possible indicator for forward propulsion if the 
significant (p < 0.05) Pearson correlation value was at least good (r > 0.75).

Results

Participant Characteristics
All 12 participants (7 male/5 female) were previously enrolled in a gait rehabilitation 
training program post-stroke. Their mean age was 61 years (SD: 9.5) with a median 
time since stroke onset of 25 months (6 to 210 months). Eight participants experienced  
an ischemic stroke, two experienced a hemorrhagic stroke, and from two participants 
the type of stroke was unknown. The average comfortable gait speed was 1.0 (SD: 0.3) 
m/s. Participant characteristics are presented in Table 1.

Foot Strike Angle Validation
In total, 11,985 strides from all trials and all participants were included for stride-by-
stride validity analysis. Excellent reliability of the IMU-based FSA compared to the 

with Equations (8) and (9), while the IMU-based shank angle was directly derived 
from the Euler angle of the sensor output. Again, the shank angle upon TC for both 
systems was calculated for each gait cycle.

Shank segment OMCS = position KNEE MARKER − position ANKLE MARKER, (8)

Forward propulsion peak = maximum ( ),

with GRF AP direction for each breaking-to-propulsion transition  
until terminal contact

Shank angle OMCS = 

(9)

The foot and shank angular velocity were calculated as the first derivative of the foot 
and shank angle for the OMCS, respectively. For the IMU-based foot and shank 
angular velocity, the angular velocity directly measured from the gyroscope was 
used. The foot and shank angular acceleration were subsequently calculated as the 
derivative of the foot and shank angular velocity for both measurement systems. 
Finally, the maximum value of each of the parameters for each gait cycle was taken.
The linear acceleration of the shank was calculated as the square root of the squared 
acceleration in the global frame in the horizontal plane (Equation (10)) for both 
systems. For the OMCS, the acceleration along the x- and y-axis was calculated with 
the second derivative of the x- and y-positions of the shank segment defined in 
Equation (8). For the IMUs, the acceleration in the global frame was directly retrieved 
from the IMU data. For the shank’s linear acceleration, again, the maximum value 
during each stance phase was computed.

Shank linear acceleration =  (10)

Statistical Analysis
Participant characteristics were reported using descriptive statistics. The normality 
of the data was tested using the Shapiro–Wilk test, and results were reported 
accordingly. To assess the reliability and agreement of the IMU-derived FSA compared 
to those of the gold standard, intraclass correlation and Bland–Altman analysis were 
performed for all strides of all participants, as well as for each participant individually. 
The latter, referred to as within-subject analysis, was performed to evaluate whether 
or not the parameters could be used as feedback for individualized home-based 
training. To determine if a potential parameter was a suitable indicator for forward 
propulsion, the Pearson correlation coefficients between the potential parameters 
(foot angle at TC, shank angle at TC, maximum foot angular velocity, maximum shank 

Table 1. Participant characteristics.

Participant Characteristics

N 12

Gender (male/female) 7/5

Age (mean ± SD years) 61.0 ± 9.5

Height (mean ± SD cm) 176.4 ± 8.5

Weight (mean ± SD kg) 85.0 ± 14.7

Affected side (left/right) 6/6

Stroke type (ischemic/hemorrhagic/unknown) 8/2/2

Time since stroke onset (median (IQR) months) 24.5 (11; 76.5)

Gait speed (mean ± SD m/s) 1.0 ± 0.3
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correlation between the indicators for forward propulsion and the measured AUC 
forward propulsion for the within-subject analysis are presented in Table 3. The mean 
Pearson correlations ranged between 0.06 and 0.63 with relatively high SD values, 
indicating large differences between subjects. Appendix A, Figure A2, includes correlation 
graphs of each of the parameters with the AUC forward propulsion.

OMCS-based FSA was found via the ICC (ICC (3,1) = 0.97, 95%CI: [0.96; 0.97]). Figure 4 
shows the Bland–Altman analysis of the FSA measured on a stride-by-stride basis. 
Differences between the IMU-based FSA and OMCS-based FSA were on average  
1.4 degrees, with 95% limits of agreement ranging from −3.0 to 5.9 degrees.  
The repeatability coefficient was 5.3 degrees.

For the within-subject analysis, the step count per subject ranged from 630 to 1283 
steps. Differences between the IMU-based and OMCS-based FSA were on average  
1.5 degrees, with 95% limits of agreement ranging from −1.0 to 3.9 degrees (Figure 5). 
The mean repeatability coefficient for the within-subject analysis was 3.1 (SD: 2.0) 
degrees. Figure A1 in Appendix A shows the Bland–Altman analysis of the FSA on a 
stride-by-stride level for each participant.

Indicative Parameter for Forward Propulsion
Out of the 11,985 strides recorded in total, 7591 strides were suitable for a further 
analysis of propulsive force, as they involved only one foot on a single force plate. For 
each individual, between 1693 and 931 strides were included in this analysis (median 
665 strides).

All IMU-based indicators for forward propulsion demonstrated only weak to moderate 
Pearson correlation coefficients with the AUC forward propulsion on a stride-by-
stride level (see Table 2). The equivalent OMCS-based parameters revealed similar 
weak to moderate Pearson correlation coefficients. The mean and SD of the Pearson 

Figure 4. Bland–Altman analysis of the FSA (degrees) of all strides of all participants. 
The difference between measures is calculated as IMU-based FSA—OMCS-based FSA.

Figure 5. Bland–Altman analysis of the mean FSA (degrees) per participant. The difference 

between measures is calculated as mean IMU-based FSA—mean OMCS-based FSA.D
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Table 2. Pearson correlation between different gait characteristics and the AUC 
forward propulsion for the stride-by-stride analysis.

IMU-Based OMCS-Based

Parameter Pearson r Pearson r

Foot angle upon TC 0.43 * 0.52 *

Max foot angular velocity 0.23 * 0.32 *

Max foot angular acceleration −0.01 0.18 *

Shank angle upon TC 0.26 * 0.42 *

Max shank angular velocity −0.13 * 0.12 *

Max shank angular acceleration 0.23 * 0.21 *

Shank linear acceleration 0.17 * −0.01

Stride length 0.26 * 0.50 *

All parameters are separately evaluated based on OMCS data and IMU data. * indicates significant correlations 
(p < 0.05).
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All IMU-based indicators for the peak forward propulsion demonstrated only weak to 
moderate Pearson correlation coefficients in the stride-by-stride analysis, except for 
stride length (r = 0.76) (see Table 4). The equivalent OMCS-based parameters revealed 
higher Pearson correlation coefficients of up to r = 0.77 for the maximum foot angular 
velocity and r = 0.76 for the foot angle upon TC. The mean and SD of the Pearson 
correlation between the indicators for forward propulsion and the measured peak 
forward propulsion for the within-subject analysis are presented in Table 5. While the 
mean Pearson correlation for the within-subject analysis did not exceed ‘moderate’ 
correlation values, the relatively high SD values between 0.19 and 0.49 indicate large 
differences between subjects. Appendix A, Figure A3, includes correlation graphs of 
each of the parameters with the peak forward propulsion.

Table 3. Mean and standard deviation of the within-subject analysis for  
the Pearson correlation between the different gait characteristics and the AUC 
forward propulsion.

IMU-Based OMCS-Based

Parameter Pearson r 
Mean ± SD

Pearson r 
Mean ± SD

Foot angle upon TC 0.44 ± 0.26 0.49 ± 0.31

Max foot angular velocity 0.19 ± 0.37 0.39 ± 0.31

Max foot angular acceleration 0.04 ± 0.26 0.19 ± 0.42

Shank angle upon TC 0.32 ± 0.37 0.63 ± 0.22

Max shank angular velocity 0.01 ± 0.34 0.09 ± 0.37

Max shank angular acceleration 0.17 ± 0.24 0.19 ± 0.42

Shank linear acceleration 0.28 ± 0.17 0.06 ± 0.20

Stride length 0.20 ± 0.26 0.49 ± 0.20

All parameters are separately evaluated based on OMCS data and IMU data.

Table 4. Pearson correlation between different gait characteristics and the peak 
forward propulsion for the stride-by-stride analysis.

IMU-Based OMCS-Based

Parameter Pearson r Pearson r

Foot angle upon TC 0.61 * 0.77 *

Max foot angular velocity 0.63 * 0.78 *

Max foot angular acceleration 0.05 * 0.64 *

Shank angle upon TC 0.21 * 0.68 *

Max shank angular velocity −0.14 * 0.53 *

Max shank angular acceleration 0.46 * 0.60 *

Shank linear acceleration 0.38 * 0.35 *

Stride length 0.76 * 0.74 *

All parameters are separately evaluated based on OMCS data and IMU data. * indicates significant correlations 
(p < 0.05).

Table 5. Mean and standard deviation of the within-subject analysis for the  
Pearson correlation between the different gait characteristics and the peak  
forward propulsion.

IMU-Based OMCS-Based

Parameter Pearson r 
Mean ± SD

Pearson r 
Mean ± SD

Foot angle upon TC 0.47 ± 0.26 0.56 ± 0.37

Max foot angular velocity 0.50 ± 0.22 0.59 ± 0.26

Max foot angular acceleration 0.22 ± 0.17 0.28 ± 0.36

Shank angle upon TC 0.15 ± 0.45 0.55 ± 0.33

Max shank angular velocity −0.05 ± 0.31 0.16 ± 0.49

Max shank angular acceleration 0.14 ± 0.31 0.28 ± 0.36

Shank linear acceleration 0.25 ± 0.23 0.18 ± 0.18

Stride length 0.20 ± 0.26 0.49 ± 0.20

All parameters are separately evaluated based on OMCS data and IMU data.
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correlation, whereas the maximum foot angular velocity and foot angle at TC had 
only a moderate correlation. The absence of strong correlations between any of the 
parameters with forward propulsion on a stride-by-stride basis might be attributed 
to heterogeneity in gait patterns within our study population. While all participants 
were chronic stroke patients with affected gait, there were notable differences in 
gait speed and gait pattern, including varying degrees of stiff knee gait and 
compensatory strategies such as hip circumduction. This altered gait in stroke 
patients could also explain the disparity between our study and the research of 
Pieper and colleagues [12], which involved healthy participants tested during regular 
walking and walking with simulated pathological gait. Based on the current study, we 
conclude that none of the proposed IMU-derived indicators could serve as a valid 
indicator for forward propulsion.

Since a general application of sensors is to integrate them in real-time home-based 
training settings [27,28], the individual participant correlation between the potential 
indicators and forward propulsion was also evaluated. Averaged across subjects, this 
within-subject analysis yielded moderate correlations for the AUC and peak forward 
propulsion. Again, the correlation coefficients of the OMCS-based parameters were 
lower than their IMU-based equivalent parameters. Importantly, substantial in-
ter-individual variability in the various potential indicative parameters for both AUC 
and peak forward propulsion was found, as indicated by the high SDs across 
participants (see Tables 3 and 5). Nevertheless, none of the explored parameters 
reached the minimum requirement of a ‘good’ correlation (r > 0.75) for a substantial 
number of individuals. Therefore, we do not consider any of the studied parameters 
as appropriate to provide feedback on forward propulsion to improve the gait pattern.

This study has some limitations. Firstly, the evaluation of straight-ahead treadmill 
walking, though common in research protocols, does not fully capture the complexity 
of real-life walking scenarios involving curved paths, uphill, downhill terrain, and 
uneven surfaces. Gait kinetics and kinematics can notably differ under these diverse 
conditions compared to those under straight-ahead walking [29]. Therefore, the 
ecological validity of our findings, both in terms of the validity of the FSA and 
indicators of forward propulsion in real-world walking scenarios, warrants further 
investigation. Secondly, the discrepancy found in correlations of the forward 
propulsion with possibly indicative parameters between OMCS-derived and 
IMU-derived parameters suggests that there is a difference between the parameters 
when obtained with the OMCS and IMU. Enhancing the validity of the IMU-based 
parameters would be valuable and could result in correlation values similar to the 
OMCS-based equivalents with forward propulsion. This would mean that maximum 
foot angular velocity and foot angle upon TC could be used to assess an individual’s 

Discussion

The present study aimed to evaluate the accuracy of the IMU-derived FSA and to 
identify IMU-derived indicators for forward propulsion in individuals with stroke. The 
results show high accuracy for the IMU-derived FSA compared to that of the gold 
standard. Regarding the second aim, weak to moderate correlations between eight 
potential indicators and the measured forward propulsion were found.

The stride-by-stride evaluation revealed a mean difference of 1.4 degrees with a 
standard deviation of 2.3 degrees for the IMU-derived FSA, coupled with an excellent 
intraclass correlation (>0.9) when compared to that of the gold standard, indicating 
an acceptable level of accuracy. Previous research on the assessment of FSA with 
IMUs was performed in healthy participants during running. Although running is 
inherently different from walking, our results surpassed the accuracy even when 
analyzed on a stride-by-stride basis (3.9 ± 5.3 degrees) [14]. Furthermore, the results 
of this study are in line with the accuracy of estimated shank angles in walking, both 
of which are based on the same principle of estimating segment orientation from a 
single IMU [10]. When the FSA was averaged across all strides within each participant, 
every participant had a difference of less than 5 degrees compared to that under the 
gold standard (see Figure 5). More importantly, while the repeatability coefficient on 
a stride-by-stride basis was just above 5 degrees (5.3), a mean repeatability coefficient 
of only 3.1 degrees was found when analyzed within subjects. Given that the 
repeatability within subjects is well within the set limit of 5 degrees and only slightly 
exceeds it in the stride-by-stride analysis, we conclude that the FSA could accurately 
be assessed with an IMU in people with stroke.

For the second aim, potential indicators for forward propulsion, defined as either the 
AUC or the peak anterior–posterior GRF, were evaluated. Based on the previous 
literature [7,8,12,16–19], seven kinematic parameters of the shank and foot, as well as 
stride length, were evaluated by calculating the correlation coefficient with the 
generated forward propulsion. The stride-by-stride analysis for AUC forward 
propulsion yielded weak to moderate correlations (see Table 2). When considering 
peak forward propulsion, previous research has shown that shank linear acceleration 
could serve as a good to excellent indicator [12]. Unfortunately, our study did not 
replicate this correlation for either the OMCS- (r = 0.35) or IMU-derived (r = 0.38) shank 
linear acceleration parameter (see Table 4). However, maximum foot angular velocity, 
foot angle upon TC, and stride length marginally exceeded the threshold for a good 
correlation, suggesting their potential as indicators for peak forward propulsion, 
aligning with the review of Roelker et al. [18]. Unfortunately, only the IMU-based 
equivalent correlation coefficient for stride length reached the level of a good 
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peak forward propulsion based on multiple strides. Thirdly, our study population 
consisted of twelve participants based on the recommendation as a rule of thumb for 
pilot studies [30]. While this was a convenient sample to test the usability of a 
feedback system for the first time, this limited number of participants might not 
include all different variations of gait patterns. Future research could explore the 
effect of differences in gait patterns on the correlation of certain gait characteristics 
with forward propulsion. Lastly, our choice to evaluate relatively simple parameters 
as indicators for forward propulsion was driven by the potential application of a 
real-time feedback system for home-based rehabilitation. Prioritizing computational 
efficiency and usability, the number of required IMUs was limited to one or a 
maximum of two attached to the affected leg. Furthermore, other parameters that 
could be derived from the sensors, such as the timing of the selected parameters in 
the gait cycle, could also be valuable to estimate the forward propulsion. According to 
the literature [12,17], there was no reason to believe that the timing of the selected 
parameters was an indicator for forward propulsion. Nevertheless, the potential of 
these parameters and their combination should be explored in future studies. 
However, we acknowledge that individuals with stroke use diverse gait strategies, 
including dominant hip strategies and swing initiation alterations or step length 
modifications. Therefore, a more sophisticated, potentially multimodal analysis of a 
combination of different parameters and a fusion of data from various body 
segments, such as the pelvis, thigh, shank, and foot, may offer a better indicator for 
forward propulsion [15,31]. While the use of multiple IMUs might be feasible for 
in-clinic rehabilitation, implementing a multi-sensor setup in the home situation in 
these patients is often unfeasible.

Conclusions

The findings in the current study offer valuable insights that can contribute to the 
development of feedback systems aimed at improving the gait pattern of stroke 
survivors. This study demonstrated that the FSA can be accurately assessed with an 
IMU on the foot during straight-ahead walking. Our proposed foot and shank 
movement parameters were not suitable to provide patients with feedback regarding 
forward propulsion.
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Supplementary materials

Appendix A

Figure A1. Bland–Altman analysis of the FSA (degrees) on a stride-by-stride level for each 
participant. The difference between measures is calculated as IMU-based FSA—OMCS-based FSA.

Figure A1. Continued.
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Figure A2. Correlation graphs of the potential indicators and the forward propulsion (area under 
the curve). Each color represents a different participant.

Figure A2. Continued.
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Figure A3. Correlation graphs of the potential indicators and the forward propulsion (peak). 
Each color represents a different participant.

Figure A3. Continued.
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Introduction

Individuals with severe knee osteoarthritis (OA) can experience substantial limitations  
in daily life mobility such as during walking, turning, and rising from a chair [1]. Knee 
joint replacement surgery (total knee arthroplasty; TKA) is recommended when joint 
pain, refractory to conservative treatment, restricts daily activities substantially [2]. 
For people with knee OA, limited walking capacity is a key symptom to consider TKA 
[3-5]. Moreover, people with knee OA rate improvement in walking as a main criterion 
to consider TKA successful [6]. This patient perspective on the importance of walking 
echoes findings that show that walking metrics (e.g. gait speed) are markers of 
physical health status [7-10]. Hence, this suggests that for patients, quality of mobility 
is an important factor in the decision-making process regarding TKA. 

In clinical practice, evaluation of mobility relies on self-reports rather than on objective 
assessment of walking. Previous work has shown that self-reported mobility correlates 
only weakly with objectively assessed mobility metrics [11-13]. More specifically, 
self-reports are more strongly associated with pain scores than with performance-
based mobility measures [11, 14, 15]. Thus, relying on self-reported walking limitations 
often results in over- or underestimation of walking performance. This can contribute  
to ambivalent information and as such complicate decision-making for TKA. 

It is conceivable that people who are considered candidates for TKA have poorer 
levels of mobility than those who are not considered appropriate candidates for TKA. 
This study aimed to explore the discriminative ability of a set of mobility metrics 
assessed with wearable sensors in people with advanced knee OA. More specifically, 
we assessed a group of people after they visited the orthopedic surgeon to discuss 
suitability to undergo TKA and compared mobility metrics of individuals who were 
deemed appropriate candidates for TKA to those who were not deemed candidates 
for TKA.

Methods

Participants
In this cross-sectional study, we used mobility metrics from an existing data set of 
the Sint Maartenskliniek, collected between 2020 and 2022 for the development of  
a mobility tool at the orthopedic outpatient department. The data set was established 
by inviting individuals with knee or hip OA and individuals following knee or hip 
arthroplasty, to participate in short mobility tests directly following consultation at 
the orthopedic outpatient clinic. Additional criteria to participate in the mobility 

Abstract

Objective
It is conceivable that people who are considered candidates for total knee 
arthroplasty (TKA) due to knee osteoarthritis (OA) have poorer walking capacity 
than people who are not considered to benefit from TKA. This study explored the 
discriminative ability of mobility metrics between individuals with a TKA indication 
and individuals with no TKA indication. 

Methods
Objective measurements of mobility with the use of inertial sensors were collected  
on the same day as the decision-making regarding TKA eligibility. Inertial sensors 
on both feet, lower back and trunk were used to collect gait data during short mobility 
tests. Subsequently, participants walked up and down a 10-meter walkway for 
two minutes, and performed sit-to-stand tasks. Based on the decision made with 
the orthopedic surgeon, individuals were assigned to the TKA indication (N = 58) 
group or no TKA indication (N = 73) group. Mobility metrics were compared between 
the two groups. 

Results
OA severity was slightly higher in the TKA group compared to the no TKA group, 
indicated by the Kellgren-Lawrence score. No differences were found between 
groups on other group characteristics. Gait speed in the indication TKA group was 
0.08 m/s (95%CI:[-0.15, -0.01]) lower than in the no TKA indication group. Other 
mobility metrics were not significantly different between the groups.

Conclusions
Unlike expected, the difference in objective mobility metrics between patients 
who were considered to receive a TKA and those who were not, were very small. 
Only gait speed was slightly higher (0.08 m/s) in the group without the TKA 
indication, but the other metrics were not different between the groups. 
Therefore, it is conceivable that the decision regarding TKA indication was based 
on other parameters than mobility factors.



110 111Mobility characteristics with and without an indication for knee arthroplasty

5

down a 10-meter walkway for two minutes, making 180 degree turns at both ends 
(Figure 1, panel A). Participants were instructed to walk at their comfortable walking 
speed, wearing their own shoes. Secondly, participants were asked to perform a 
sit-to-stand task without using the armrests of the chair, as part of an additional 
short walk test (which was not further analyzed). This test was repeated three times 
(Figure 1, panel B). 

Data processing
An algorithm validated by our group [17] was used to derive mobility parameters from 
the raw data collected with the inertial sensors during the two-minute walk.

Gait speed, stride time, step time asymmetry, and trunk range of motion in the coronal 
plane were derived from the steady-state parts of the two-minute walk (excluding 
acceleration and deceleration phases before and after turns) [18]. For turning, 
the maximal turn velocity during each 180 degrees turn was calculated from the 
lumbar sensor. All metrics were calculated per stride or per turn, and averaged per 
participant. Using the algorithm of Pham et al. (2018) [19], the trunk flexion range of 
motion during sit-to-stand transfers (lean angle) was calculated. For all participants, 
the median lean angle of three sit-to-stand tasks was used as outcome.

Step time asymmetry was calculated according to Equation 1. In this measure, 50% 
indicates perfect symmetry, >50% indicates higher step time of the most affected leg 
than least affected leg, and <50% indicates higher step time for the least affected leg 
than most affected leg.

(1)

tests included age between 18-90 years old and the ability to walk for at least 2 
minutes without a walking aid. For the purpose of this study, we only analyzed data 
from individuals with knee OA (e.g. excluding individuals who came for hip OA or 
postoperative consultations), and excluded individuals with neurological or 
neuromuscular disease affecting gait. No sample size calculation was performed, 
because we used an existing data set in this study.

During the consultation at the orthopedic outpatient clinic, the patient and orthopedic 
surgeon discussed appropriateness of TKA. The outcome of the consultation was 
reported in the electronic patient record. From the electronic patient record, we first 
identified all participants within the data set who underwent TKA. In addition, 
we screened all electronic patient records of participants who did not undergo TKA, 
to identify the people who were deemed candidates for TKA by the orthopedic surgeon  
but did not undergo surgery due to a variety of practical reasons (e.g. patient did not 
wish to undergo surgery at that time). In all participants, the judgment of the 
orthopedic surgeon was used to assign individuals to either the no TKA indication 
group or the TKA indication group.

This study was registered before data analysis at Open Science Framework (https://
osf.io/fdvr5).

Procedure and data collection
Characteristics of the study population (sex, age, body mass, height, number of other 
lower extremity joint arthroplasties) were extracted from the patient’s electronic 
health record. In case of missing characteristics in the electronic health record, 
a member of the research team asked the participant to provide this information 
prior to the mobility tests. As part of standard clinical practice, anterior-posterior 
radiographic images of the knee were taken prior to the consultation with the 
orthopedic surgeon. On these images, radiographic severity of knee OA was scored 
using the Kellgren-Lawrence grading system, with 0 = none, until 4 = severe [16].  
The images were independently scored by one researcher from our group and a 
resident from the orthopedic department of the Sint Maartenskliniek. In case of a 
difference in grading, consensus was reached by scoring the images together. 

For mobility assessment, participants were equipped with four inertial sensors (MTw 
Awinda, Movella, Enschede, the Netherlands). Sensors were placed on the dorsum of 
each foot, at the sacrolumbar level of the lower back, and sternum (Figure 1, panel A), 
consistent with the set-up in a validation study from our group [17]. MT Manager 
2019.2 was used to capture sensor data with a sample frequency of 100 Hz. 
Subsequently, participants performed two mobility tasks. First, they walked up and 

Figure 1. Placement of inertial measurement units (orange rectangles) on both feet, lower back 
and sternum during 2 minute walking over a 10-meter walkway (A) and sit-to-stand task (B).

(A)

10-meter walkway

(B)
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Mobility characteristics
Mobility metrics are summarized in Table 2 and visualized in Figure 2. Individuals in 
the indication TKA group walked at a 0.08 m/s (95%CI: -0.15, -0.01) lower gait speed 
than individuals in the no indication for TKA group. Correcting for covariates did not 
change this difference. We found no significant differences on other mobility metrics. 
A post-hoc analysis showed no significant differences on gait speed between 
severities of radiographic knee OA (Χ2(2) = 4.11, p = 0.13).

Data processing was conducted with Python in Pycharm Community Edition 2021.3.2. 
Scripts are publicly available at https://osf.io/fdvr5.

Statistical Analysis
Mean differences between groups (TKA indication – no TKA indication) and 
95%-confidence intervals (95%CI) were calculated for all anthropometric, clinical, 
and mobility parameters to compare the no TKA indication and TKA indication 
groups. Prior to analysis of the mobility parameters, age, sex, height, body mass, 
Kellgren-Lawrence grade, and number of other lower extremity joint arthroplasties 
(e.g. knee, hip or ankle replacement or arthrodesis surgery) were identified as 
potential confounders for the between-group comparison. To account for a potential 
confounding effect on differences on mobility metrics, a multiple regression analysis 
was conducted with the mobility metrics as dependent variable, group (no TKA 
indication vs. TKA indication) as independent factor, and covariates mentioned above. 
Effect sizes were calculated for all mobility metrics using Cohen’s d, interpreting  
d between 0.2 and 0.5 as small effect, between 0.5 and 0.8 as moderate effect,  
and >0.8 as large effect. Fisher’s exact test was used to determine differences 
between groups for number of other arthroplasties and Kellgren-Lawrence grade.  
A post-hoc analysis was performed with a Kruskal-Wallis test to assess differences  
in gait speed across Kellgren-Lawrence grades in the study population. Due to low 
numbers of Kellgren-Lawrence grades 0 to 2, these grades were merged into one 
group. Statistical analysis of the data was conducted in RStudio (2022.02.0) using the  
R stats package version 4.1.2. Scripts for data processing are publicly available from: 
https://osf.io/fdvr5. 

Results

Study population 
Characteristics of the study population are summarized in Table 1. Data of 131 
individuals were analyzed, of which 73 had a TKA indication, and 58 did not have a  
TKA indication. We did not observe significant differences between the no TKA indication 
and TKA indication groups for age, body mass, height and body mass index (BMI).  
The number of other lower extremity joint arthroplasties was not significantly 
different between the groups. There was a significant difference between groups for 
Kellgren-Lawrence grades, which was predominantly grade 4 in the TKA indication 
group.

Table 7. Characteristics of the study groups.

Characteristics No TKA indication 
(N=73)

TKA indication 
(N=58)

Female, N (%) 43 (59%) 32 (55%) -

Age (years), mean (SD) 64.2 (8.7) 64.2 (9.4) -0.01 [-3.14, 3.12]

Body mass (kg), mean (SD) 86.4 (14.5) 87.7 (16.3) 1.31 [-4.03, 6.66]

Height (m), mean (SD) 1.73 (0.09) 1.74 (0.09) 0.01 [-0.02, 0.04]

BMI (kg/m2), mean (SD) 28.6 (4.1) 28.8 (4.6) 0.20 [-1.31, 1.72]

Number of other  
lower extremity joint 

arthroplasties,  
N (%)

p-value between-
group comparison 
(Fisher’s exact test)

 0.53

0 52 (71.2%) 36 (62.1%)

1 19 (26.0%) 19 (32.8%)

2 2 (2.7%) 2 (3.4%)

3 0 (0%) 1 (1.7%)

Kellgren-Lawrence grade, 
N (%) <0.001

0 0 (0%) 0 (0%)

1 2 (2.7%) 0 (0%)

2 13 (17.8%) 1 (1.7%)

3 27 (37.0%) 6 (10.3%)

4 29 (39.7%) 51 (87.9%)

N/A 2 (2.7%) -

TKA: Total knee arthroplasty, BMI: Body Mass Index
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Discussion

The aim of this study was to explore differences in mobility metrics between knee OA 
individuals who were and were not deemed appropriate candidates for TKA. The 
results showed on average a lower gait speed in the group with a TKA indication than 
in the group without, but no differences between groups on other mobility metrics.

The difference in gait speed between groups was significant but small, as reflected in 
the effect size of 0.42. Moreover, the absolute mean difference of 0.08 m/s can be 
considered low when compared to minimal clinically important difference, which 
ranges between 0.10 – 0.20 m/s in people with gait impairments [20]. Previous studies 
evaluating gait speed in subgroups of individuals with knee OA are scarce. In one 

Table 8. Mobility metrics for individuals with an indication for TKA and no  
indication for TKA.

Mobility 
outcome

No TKA 
indication 

(N=73)

TKA indication 
(N=58)

Mean 
difference 

[95%CI]

Corrected 
mean 

difference 
[95% CI]

Effect size 
(Cohen’s d)

Gait speed 
(m/s)

1.17 (0.20) 1.09 (0.20)
-0.08  

[-0.15, -0.01]
-0.08  

[-0.15, -0.01]
0.42

Stride time (s) 1.12 (0.09) 1.15 (0.10)
0.03  

[0.00, 0.06]
0.03  

[-0.01, 0.07]
-0.31

Step time 
asymmetry 

(%)
49.9 (1.05) 50.0 (1.00)

0.03  
[-0.32, 0.39]

-0.16  
[-0.57, 0.26]

-0.03

Trunk coronal 
RoM (deg)

13.8 (6.6) 16.1 (8.33)
2.05  

[0.23, 5.59]
2.05  

[-1.02, 5.12]
-0.39

Peak turn 
velocity 
(deg/s)

187 (45.0) 175 (45.1)
-12.8  

[-28.5, 2.87]
-14.0  

[-31.4, 3.48]
0.28

Lean angle 
(deg)

53.2 (15.3) 56.8 (13.8)
3.53  

[-1.78, 8.84]
5.73  

[-0.49, 11.94]
-0.24

Metrics for the groups are shown as mean (SD). [95%CI]: 95% Confidence interval. RoM: Range of motion.

Figure 2. Raincloud plots comparing mobility metrics of the no TKA indication and TKA 
indication groups. Grey dots represent individuals within each group. Panel A: Gait speed (m/s), 
B: Stride time (s), C: Step time symmetry (%), D: Trunk range of motion (deg), E: Peak turn velocity 
(deg/s), F: Lean angle (deg). Peak turn velocity. Black horizontal line shows the mean of the group. 
* indicates statistical significant difference between the groups.
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Turning and sit-to-stand transfers were included in our study as important components  
of mobility, which are known to be impaired in people with knee OA [31, 32]. In line 
with most metrics in this study, no differences were found between people with and 
without a TKA indication on either turning or sit-to-stand metrics. Compared to 
reported mean turning peak velocities of healthy subjects in other studies using very 
similar methodologies, both groups had on average low peak turn velocities [33-35]. 
This confirms the potential value of evaluating turning in people with knee OA, 
although the group comparison did not show specific sensitivity of this parameter to 
discriminate between subgroups of knee OA .

Multiple factors play a role in the decision-making process regarding a TKA indication. 
Likely, this contributed to the limited differences in mobility metrics between people 
with and without an indication for TKA. Globally, the guidelines for TKA appropriateness 
vary, and substantial heterogeneity in patients’ characteristics and disease severity 
when undergoing TKA has been observed [36, 37]. This study involved only surgeons 
of one Dutch hospital, adhering to the Dutch orthopedic guidelines for TKA indication  
[36]. Indication criteria according to the Netherlands Orthopaedic Association 
include radiographic knee OA severity (Kellgren-Lawrence ≥2), and the impact of 
knee pain on quality of life and participation (work or social) [36]. Based on radio- 
graphic severity, the TKA indication group was notably homogeneous with almost 
90% of the people classified as Kellgren-Lawrence grade 4. Still, the level of impact  
of knee OA severity on an individual’s daily life can vary substantially. Moreover,  
the expectation of the surgeon regarding the likelihood that TKA can improve an 
individual’s quality of life is an important factor in the decision-making process. These 
different factors in the comprehensive decision-making process likely increased the 
variance within groups, and contributed to small differences between groups.

This study has a number of limitations which should be considered when interpreting 
the results. First, we excluded participants who were unable to walk for at least two 
minutes without assistive devices. Assuming that people unable to walk would be 
more likely to be in the group with TKA indication, exclusion of this group may have 
led to underestimation of the group differences between the groups.

Another limitation is the absence of pain scores or other patient-related outcome 
measures in this study. Based on the guidelines that indicate to refer a patient to an 
orthopedic surgeon only after conservative treatments have failed [38], it could be 
expected that all participants in this study had considerable levels of pain or 
discomfort. However, in clinical practice inadequate referrals, and underutilization of 
conservative treatment modalities are seen [39]. As such, pain scores may have been 
helpful to better understand the differences between the groups in our study. Finally, 

study [21], individuals scheduled for TKA walked at a 0.33 m/s lower gait speed than 
individuals with moderate knee OA (not TKA candidates). However, direct comparison 
with this study is difficult as the group characteristics, in particular the radiographic 
OA severity, between our and their study differs substantially.

We noted substantial heterogeneity within groups on all mobility metrics. To 
illustrate, gait speed ranged from 0.5 to 1.5 m/s across the whole study population. For 
reference, walking speeds below 0.8 m/s are considered to be indicative of difficulties 
walking outdoors, whereas a gait speed above 1.2 m/s can be considered as normal, 
not limiting the activities of daily life [22]. The reference value of gait speed in healthy 
individuals in the same age range as our study population is ~1.4 m/s with a standard 
deviation between 0.13-0.14 [23], compared to a standard deviation of 0.2 m/s in our 
study population. Taken together, the range in gait speed suggests that in both our 
study groups, people with unimpaired to severely impaired walking capacity were 
present.

Besides stride characteristics, we were interested in metrics reflecting potential 
compensation strategies, to reduce pain and loading on the affected knee. Such 
compensation strategies can surface as changes in trunk motion or asymmetries in 
the stepping pattern [24-26]. Lateral lean of the trunk towards the unaffected leg has 
been associated with reduced moments around the knee, and, although less 
convincingly, with lower pain levels [24, 27]. More lateral trunk lean, as well as more 
trunk motion in the frontal plane, has been observed in people with knee OA when 
compared to healthy individuals [24, 28]. However, no differences in trunk range of 
motion during walking in the coronal plane were found between individuals with and 
without a TKA indication in this study. It should be noted that this range of motion is 
independent of the absolute lateral trunk lean angle. For example, a person with a 
range of motion of 10 degrees can have an absolute lateral lean angle of 5 degrees to 
the left to 5 degrees to the right, or from perfectly upright to 10 degrees to the right. 
Therefore, we cannot rule out the possibility that individuals with an indication for 
TKA walked with more absolute lateral trunk lean than those without a TKA indication, 
while demonstrating similar lateral trunk range of motion. Compensation in terms of 
asymmetry between left-right step characteristics was also not observed in our 
study sample, with near-perfect symmetry values for step time. Although asymmetry 
in individuals with knee OA has been reported in studies evaluating knee kinematics 
and kinetics [29, 30], our findings are in line with a recent meta-analysis concluding 
that step time asymmetry was not higher in individuals with knee OA than in healthy 
individuals [31]. This can suggest that unloading of the affected knee, evident in 
kinetic or kinematic measures, does not translate to adaptations in temporal stepping 
or trunk motion characteristics. 
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Introduction

Development of new healthcare innovations including rehabilitation technologies 
occurs at fast speed, but their implementation in modern hospitals and rehabilitation 
centers is often not successful. Successful implementation of new healthcare 
innovations in clinical practice is more likely when users are positive about their 
usability [1]. Furthermore, the likeliness that the intended users are positive about 
the usability of such systems increases when they are involved in the process of 
prototyping, testing and evaluating the innovations during the development (e.g. 
interactive design thinking approach) [2]. Therefore, evaluation of system usability of 
healthcare innovations by their intended users is important during all developmental 
phases until implementation.

System usability includes system effectiveness, system efficiency, and user satisfaction 
(ISO 9241-11). Questionnaires are commonly used to assess the different aspects of 
system usability, as they are quick and easy to perform. Previous research has shown 
that it is important to use questionnaires in the language of the target population’s 
native language [3,4]. For healthcare innovations the System Usability Scale (SUS) 
[1,2] and Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 
[5] are the most commonly used usability questionnaires worldwide. A Dutch version 
of the QUEST (D-QUEST) is available to evaluate satisfaction with an assistive device 
and related services. The D-QUEST consists of 12 items, which are scored on a 5-point 
Likert scale from ‘totally unsatisfied’ to ‘totally satisfied’. The first eight items are 
about the device itself, the remaining four items about the delivery process. In case a 
respondent is not satisfied, they are asked to provide a reason. The D-QUEST shows 
an acceptable level of internal consistency (Cronbach’s alpha=0.88) and content 
validity (Spearman’s rho=0.78) for assistive devices [6]. The D-QUEST is designed for 
users with several months of experience with a certain device [7] and is therefore less 
feasible in the development phase. Furthermore, the D-QUEST is not suitable for 
eHealth applications, since statements regarding size and weight are not applicable 
to software.

The SUS was developed as a fast and complete measure of subjective perception of 
system usability within the development and evaluation phase [1]. The SUS is the 
international standard for measuring usability of different technologies such as 
websites, mobile applications, eHealth applications, and hardware installation kits 
[8, 9, 10]. The scale consists of 10 items, which can be filled out within 10 minutes. All 
items are scored on a 5-point Likert scale from ‘strongly disagree’ to ‘strongly agree’. 
Scores per item are converted to the overall SUS score, which ranges from 0 to 100, 
representing the overall system usability [8]. Overall scores from 0 to 50 indicate ‘not 

Abstract

Background
The System Usability Scale (SUS) is the most commonly used questionnaire to 
assess usability of healthcare innovations but is not available in Dutch (D-SUS). 
This study aims to translate the SUS to Dutch and to determine its internal 
consistency, test-retest reliability and construct validity in healthcare innovations 
focused on rehabilitation technologies.

Methods
Translation of the SUS was performed according to the WHO recommendations. 
Fifty-four participants filled out the D-SUS and Dutch Quebec User Evaluation of 
Satisfaction with assistive Technology (D-QUEST) twice. Internal consistency was 
assessed by Cronbach’s alpha. Test-retest reliability was evaluated by Gwet’s 
agreement coefficient (Gwet’s AC2) on item scale, and Pearson correlation 
coefficient (PCC) for the overall D-SUS scores. Construct validity was assessed 
with the PCC between the D-SUS and D-QUEST overall scores. (Netherlands Trial 
Register, ID: NL9169)

Results
After translation, Cronbach’s alpha was 0.74. Gwet’s AC2 was 0.68 and the PCC 
between the first and second overall D-SUS scores was 0.75. No significant 
difference in D-SUS score between the two measurements was found. Repeatability 
coefficient was 18.4. The PCC between the D-SUS and D-QUEST overall scores  
was 0.49

Conclusions
The D-SUS is a valid and reliable tool for usability assessment of healthcare 
innovations, specifically rehabilitation technologies.
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The study consist of two phases: The translation phase (Phase I) and the validation 
phase (Phase II). For an overview see figure 1.

Phase I: Translation phase
Phase I includes the translation of the original English version of the SUS into Dutch 
following the WHO recommendation for translating questionnaires [18]. It consists of 
the following steps:
(1)	 Forward translation:

a.	Forward translations: the original version was translated into Dutch by two 
independent native Dutch speakers.

b.	Reconciliation version: the two translated versions were compared by the 
forward translators and combined into one reconciliation version.

(2)	 Back-translation: the reconciliation version was translated back into English by a 
native English speaker without any prior knowledge of the original version of the SUS. 

(3)	 Pre-final version: based on dissimilarities between the back-translation and 
original SUS, adjustments were made to the reconciliation version, resulting in a 
pre-final version of the D-SUS. In case of major changes of concepts and sentence 
structures, steps 2 and 3 were repeated.

(4)	 Pre-testing: the pre-final version was tested in a small sample size (n=10) on 
understandability (face validity) of the questions by asking participants to think 
aloud. This gave an idea about the interpretation of the items [19]. This information 
was used to adjust the pre-final version into the final version. In case major 

acceptable’, 51 to 67 indicate marginal level of usability, and 68 to 100 indicate 
‘acceptable’ levels of usability [9]. So far, translations of the SUS have been made into 
Arabic [11], Chinese [12], Danish [13], Indonesian [14], Malay [15], Polish [16], and 
Portuguese [17], but there is no official Dutch translation yet [8]. Hence, a Dutch 
version of the SUS is recommended for evaluation during the development of 
rehabilitation technologies and healthcare innovations in the Netherlands. In 
addition, validation of the SUS in healthcare innovations is limited to an eHealth 
application for mental health [13]. So far, validation of the SUS in rehabilitation 
technologies with different types of users is lacking. In contrast to many application 
in which the SUS has been used, most rehabilitation technologies have patients as 
well as therapists as users. Neurological patients often need assistance from 
therapist filling out a questionnaire especially when not formulated in their native 
language. These limitations withhold the use of the SUS in all stages of the 
development of rehabilitation technologies. 

The primary aim of this research was to translate the original English version of the 
SUS into Dutch (D-SUS). The secondary aim was to determine the internal consistency, 
test-retest reliability and construct validity of the D-SUS in healthcare innovations 
with focus on rehabilitation technologies in the Netherlands. Patients and therapists 
were included as users. It was hypothesized that the D-SUS has acceptable internal 
consistency and good test-retest reliability as has been found in other language 
versions of the SUS [17, 23]. Furthermore, a moderate correlation was expected with 
the D-QUEST.

Materials and methods

Healthcare innovations cover a very wide range of technological (rehabilitation) 
systems each with a unique purpose. Therefore, users of a wide variety of healthcare 
innovations focused on rehabilitation technologies were included in this study. 
Participants were users of gait training devices (GRAIL, C-Mill, ZeroG®), wearable 
exoskeleton (ReWalkTM), and eHealth applications (Garmin Connect, Polar Flow).

The study protocol was submitted at the medical ethical board ‘CMO regio Arnhem-
Nijmegen’ (identification: 2020-6848) and was granted an exemption of the Dutch 
medical scientific research act (WMO). The study was registered at the Netherlands 
Trial Register (identification: NL9169). Permission to translate the original version of 
the SUS to Dutch was given by the original author prior to the start of this study.

Figure 1. Flowchart of phase I: Translation phase, and phase II: Validation phase of this study.
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parametric equivalent will be used (Wilcoxon signed-rank test). As an indication for 
measurement errors, the repeatability coefficient and limits of agreement were 
calculated. Furthermore, the percentage of agreement was determined by comparing  
the agreement in qualitative score (usable/not-usable) of both D-SUS evaluation 
moments. The cut-off point for usable/not-usable is set at an overall score of 68-points  
on the D-SUS as defined by the original author of the SUS [8].

Construct validity [23] of the D-SUS was assessed by the PCC between the overall 
D-SUS score and the overall D-QUEST score. The overall D-QUEST score was calculated 
as the normalized sum score of the product evaluating part of the questionnaire, 
disregarding the part evaluating the delivery process. The D-QUEST is not suitable for 
eHealth applications, therefore users could not fill out the D-QUEST and were not 
taken into account for analysis of construct validity. Additionally, the correlation 
between the overall D-SUS score and the general usability question was assessed  
by the PCC.

Results

Phase I: Translation phase
In the back translation of the reconciliation version of the D-SUS there were two 
major differences compared to the original SUS. The first difference was “technical 
person” from the original SUS, which has a literal translation in Dutch that seems 
inappropriate for usability testing in healthcare innovations. The translation for 
“expert” was used for the Dutch pre-final version. The other difference with the 
original SUS came from the word “cumbersome”. This word has no appropriate 
translation in Dutch. We considered the Dutch word “lastig” as the most appropriate 
translation for the pre-final version of the D-SUS.

The characteristics of the 10 participants (7 patients / 3 therapists) of the pre-testing 
of the pre-final version, who scored the items while thinking aloud, are shown in table 1. 
The literal translation of “inconsistencies” (“inconsistenties”) resulted in misunder-
standing of item 6, which was solved by using “tegenstrijdigheden” instead. The use 
of the “tegenstrijdigheden” translation as alternative of the literal translation of 
“inconsistencies” was discussed with a native English speaker and considered to be 
appropriate.

Items 3, 4 and 7, appeared to be difficult to understand for most users due to 
unnecessary long sentence structures. Dutch is a much more direct language than 
English, and participants got confused with use of extra verbs that do not add to  

changes of concepts and/or sentence structures after pre-testing were needed, 
steps 2, 3 and 4 were carried out again. Participants in this step of the translation 
phase had to be either a patient or therapist aged 18 years or older, have Dutch as 
a native language, and must have at least one rehabilitation session experience 
with the GRAIL.

(5)	 Final version: proofread the final version of the D-SUS for minor errors such as 
typos.

Phase II: Validation phase
Phase II includes assessment of the internal consistency, test-retest reliability and 
construct validity of the D-SUS in healthcare innovations, with focus on rehabilitation 
technologies. To be eligible to participate in this study, one had to be at least 18 years 
old, have good understanding of the Dutch language, and have at least four different 
sessions of use of either gait training devices (GRAIL, C-Mill, ZeroG®), wearable 
exoskeleton (ReWalk™), or eHealth applications (Garmin Connect, Polar Flow) either 
as a patient or as a therapist.
Participants received the D-SUS, D-QUEST, and the general usability question (“How 
would you rate the application on a scale from 0 to 10?”) via CastorEDC in their email 
twice, the second measurement being after a wash-out period of 2 to 4 weeks after 
the first measurement. The Garmin Connect and Polar Flow users did not receive the 
D-QUEST, since this questionnaire is not suitable for eHealth applications.

The score contributions of each item and the overall D-SUS score were calculated as 
recommended by the original author [1]. The internal consistency by Cronbach’s  
alpha was determined for the first measurement. Cronbach’s alpha ranges between 0  
and 1, and is considered ‘excellent’ (>0.9), ‘good’ (>0.8), ‘acceptable’ (>0.7), ‘questionable’ 
(>0.6), ‘poor’ (>0.5) and ‘unacceptable’ (<0.5) [20].

Test-retest reliability was assessed by several tests. Gwet’s agreement coefficient 
with second-order chance correction (AC2) was calculated for each item of the D-SUS. 
Gwet’s AC2 was interpreted as: ‘poor’ (<0.0), ‘slight’(≤0.2), ‘fair’ (≤0.4), ‘moderate’ (≤0.6) 
‘substantial’ (≤0.8), and ‘almost perfect’ (>0.8) agreement, based on the Landis and 
Koch scale for Kappa statistics since no equivalent scale for Gwet’s AC2 exists [21].  
For the test-retest reliability of the overall D-SUS score, the Pearson correlation 
coefficient (PCC) was determined. The PCC values range between -1 and 1, and 
absolute values are considered as ‘weak’ (PCC < 0.4), ‘moderate’ (PCC < 0.7), ‘strong’ 
(PCC ≥ 0.7), and ‘perfect’ (PCC = 1) correlation [22]. In addition, Bland-Altman analysis 
was performed. Differences in mean overall D-SUS scores between the first and 
second measurement were tested with a dependent t-test in case the data is normally 
distributed (tested with Shapiro-Wilk test for normality), otherwise it’s non- 
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(usable/not-usable) between the D-SUS measurement moments was 78%. Regarding  
the construct validity of the D-SUS, the PCC between the overall D-SUS score and  
the overall D-QUEST score was 0.49 (figure 3) and the PCC between the overall D-SUS 
score and the general usability question was 0.28.

the conceptual meaning of a question. For example, the original version of item 3 is  
“I thought the system was easy to use”, the literal translation in the pre-final version  
was “Ik denk dat het systeem gemakkelijk te gebruiken was”. In Dutch, the same 
conceptual meaning is achieved by the shorter final version: “Ik vond het systeem 
gemakkelijk te gebruiken”. The final version of the D-SUS is shown in table 2.

It also became evident that the role of the user affects the understanding of the 
different items. For example, therapists named the technical staff of the hospital as 
the expert of the system, whereas the patients named their therapist as the expert  
of the system (item 4, including adaptation of “technical person” to “expert”).

Phase II: Validation phase
For the validation phase, 60 participants were included (30 patients, 20 therapists,  
10 eHealth users). Five participants were lost-to-follow up between the first and 
second measurement, one participant only filled out half of the D-SUS at the first 
measurement and one participant did not complete the D-QUEST at the second 
measurement. This resulted in 54 datasets used to test the internal consistency, 
test-retest reliability and construct validity. Characteristics of the 54 participants 
are shown in table 3.

Cronbach’s alpha as a measure of internal consistency was 0.74 [95% CI: 0.62, 0.83]. 
Gwet’s AC2 as a measure for test-retest reliability was 0.68 [95% CI: 0.65, 0.72], p<0.05. 
The PCC between the first and second overall D-SUS scores was 0.75, p<0.05. The 
Bland-Altman plot of the first and second overall D-SUS scores is shown in figure 2, 
including the repeatability coefficient (18.4) and limits of agreement ([-17, 20]). 
A paired samples t-test showed no significant difference between the first and second 
overall D-SUS score (p = 0.29). The percentage of agreement in qualitative score 

Table 1. Participant characteristics of phase I: translation phase.

Gender (n) Male 7

Female 3

Age (years) Mean ± sd 54 ± 12

Level of education (n) Secondary education 2

Vocational education and training 1

Higher education 7

Role (n) Therapist 3

Patient 7

Table 2. Original English items of the System Usability Scale and the final version 
of the translated Dutch version.

Original SUS item Translated Dutch version

1 I think that I would like to use this system 
frequently.

Ik denk dat ik dit systeem vaak zou willen 
gebruiken.

2 I found the system unnecessarily 
complex.

Ik vond het systeem onnodig ingewikkeld.

3 I thought the system was easy to use. Ik vond het systeem gemakkelijk te 
gebruiken.

4 I think that I would need the support of 
a technical person to be able to use this 
system.

Ik denk dat ik de hulp van 
een expert nodig heb om dit systeem te 
kunnen gebruiken.

5 I found the various functions in this 
system were well integrated.

Ik vond de verschillende functies van dit 
systeem goed geïntegreerd.

6 I thought there was too much 
inconsistency in this system.

Ik denk dat er te veel tegenstrijdigheden 
in dit systeem zaten.

7 I would imagine that most people would 
learn to use this system very quickly.

Ik kan me voorstellen dat de meeste 
mensen heel snel leren om dit systeem te 
gebruiken.

8 I found the system very cumbersome to 
use.

Ik vond het systeem heel lastig om te 
gebruiken.

9 I felt very confident using the system. Ik voelde me zelfverzekerd tijdens het 
gebruik van het systeem.

10 I needed to learn a lot of things before I 
could get going with this system.

Ik moest veel dingen leren voordat ik met 
het systeem aan de slag kon gaan.
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Discussion

In this study a Dutch version of the SUS was translated from the original English 
version and validated for rehabilitation technologies and eHealth applications. The 
translation phase indicated that the different items were easy to understand. 
However, the role of the user (therapist or patient) influenced the interpretation of 
the different items. The D-SUS had acceptable internal consistency, high test-retest 
reliability, and acceptable agreement on qualitative score (usable/not-usable) on 
group level. On an individual level fairly high repeatability coefficients were found on 
the overall D-SUS scores. A moderate correlation between the D-SUS and D-QUEST 
and a weak correlation between D-SUS and the general usability question was found.

From the translation phase of this study it became evident that the ten items of the 
D-SUS were easy to understand. However, unsurprisingly, differences in interpretation 
were found between therapists and patients. Generally, therapists mainly took into 
account what they have to learn about the system, whereas patients also considered  
their physical abilities to use a certain rehabilitation technology. Therefore, we 
recommend to assess the usability in patients and therapists during all stages in the 
development of rehabilitation technologies, which are used by therapists and 
patients. Furthermore, it is important to use questionnaires in the language of the 
target population’s native language [3,4]. Therefore, assessment of the usability in 
both groups in their native language will potentially increase the use of the SUS. This 

Table 3. Participant characteristics of phase II: validation phase. The total number  
of analyzed datasets is 54 (of which 53 were complete).

Gender (n (%)) Male 25 (46%)

Female 29 (54%)

Age (years) Mean ± sd 45 ± 16

System users (n (%)) GRAIL 15 (28%)

C-Mill 10 (19%)

ZeroG® 11 (20%)

ReWalk™ 8 (15%)

Garmin Connect/Polar Flow 10 (19%)

Role (n (%)) Therapist 19 (35%)

Patient 25 (46%)

eHealth user 10 (19%)

Figure 2. Bland-Altman plot of the first and second overall D-SUS scores for test-retest reliability.

Figure 3. Pearson correlation between overall D-SUS score and normalized, sum D-QUEST 
score for construct validity.
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general usability question. Similar to the D-QUEST, it is most likely that participants 
rate a system primarily based on the subdomain user satisfaction rather than the 
complete concept of system usability when asked to rate a system on a scale from 0 
to 10. Moreover, the weak correlation indicates that one single question is not inter-
changeable with the more extensive D-SUS. 

In conclusion, the translated version is considered equivalent to the original version 
in terms of internal consistency, and has proven to be a valid and reliable tool to 
assess usability of healthcare innovations, and specifically rehabilitation technologies, 
in the Dutch adult population. Use of the D-SUS allows for a quick and easy evaluation  
of usability during all stages of development, promoting usability and successful 
implementation in clinical practice. One should, however, be careful with relying on 
individual D-SUS scores to evaluate an improvement in usability.
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might in turn promote the usability and the implementation of rehabilitation 
technology in clinical practice. 

Internal consistency of the D-SUS, as measured with Cronbach’s alpha was slightly 
smaller compared to previous translation studies (0.79-0.84 [10]), but was still 
exceeding the minimum acceptable value of 0.7 [20].

The D-SUS had a good test-retest reliability on an group level indicated by the strong 
PCC of 0.75 and lack of significant difference between the two measurements. 
In addition, on an individual level participants agreed with themselves on qualitative  
score (usable/not usable) in 78% of the cases, which is in line with previous research 
[17]. However, the overall D-SUS scores showed a fairly high repeatability coefficient 
(18.4). Unfortunately, no repeatability coefficients have been reported in the 
literature before. The high repeatability coefficient could be explained by filling 
errors when positive/negative statements are alternated as found in previous 
literature [17, 24]. However, no clear evidence was found in this study to indicate so,  
as Gwet’s AC2 was ‘substantial’ at 0.68. Another possible explanation is that a 
participant’s views upon rehabilitation technology could be affected by physical  
and emotional mood state and physical ability [25]. These could vary between 
measurements and might differ, for example, due to just finishing a difficult therapy 
session or before the start of one. A limitation of this study is that we did not 
standardize the timing of the evaluation relative to the therapy session, which could 
have reduced the effect of physical and emotional mood. As it was an inclusion 
criterium that participants were familiar with the system for which they filled out the 
questionnaires, differences in D-SUS scores between measurements due to learning 
effects were minimized. Hence, the agreement on qualitative score of the D-SUS 
indicates that the D-SUS can be used in a relatively small population to identify 
whether or not a rehabilitation technology is usable or not. However, a larger 
population is needed to indicate if the usability of a rehabilitation technology has 
been improved or is better in comparison to another system.

For construct validity, moderate and weak PCC’s were found between the D-SUS, 
D-QUEST, and the general usability question, indicating that they are measuring 
usability on different, but related constructs. The D-SUS asks to score the items on 
level of agreement, whereas the D-QUEST asks to score on level of satisfaction. This is 
an important difference, as one could, for example, agree on ‘I found the system 
unnecessarily complex’ for a very unnecessarily complex system, but on the same 
time be very satisfied with using the system. Additionally, not all items of the 
D-QUEST are relevant to training devices (GRAIL, C-Mill) or even applicable to eHealth 
applications [5]. A weak correlation was measured between the D-SUS and the 
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Introduction

Stroke survivors have a significantly increased risk of falls and often face mobility 
problems due to impaired balance and gait [1]. Most common gait impairments in 
people with stroke are reduced foot elevation during the swing phase and insufficient 
forward propulsion during push-off [2], [3]. Reduced foot elevation is often caused by 
weakness of the ankle dorsiflexors and frequently referred to as a ‘drop foot’. It is 
characterized by a negative Foot Strike Angle (FSA), meaning that people with drop 
foot make initial contact with the toe, rather than the heel of the foot [2]. As a result, 
drop foot often prevents a proper loading response, causing problems in weight 
acceptance and balance. Furthermore, stroke survivors suffering from drop foot 
frequently use compensatory strategies such as hip circumduction to prevent foot 
drag [2]. Additionally, inadequate forward propulsion is the result of reduced push-off 
force, caused by weakness of the ankle plantar flexors [3]. Insufficient forward 
propulsion prevents stroke survivors from generating strides with typical length  
and speed.

In the subacute phase after stroke, effective rehabilitation training is critical to 
restore the ability to lift the foot and generate proper forward propulsion [4]. 
Furthermore, studies indicate that individuals with chronic stroke possess a 
propulsive reserve in the paretic limb, which can be enhanced through task-specific 
training [5], [6]. Similarly, a randomized controlled trial showed that dorsiflexion-as-
sisted gait training in the chronic phase of stroke resulted in an improved foot strike 
angle, with participants making initial contact with their heel rater than their flat 
foot or toe [7]. Traditionally, therapists provide stroke survivors with valuable 
feedback to improve their gait pattern during in-clinic therapy. After discharge from 
the clinic, a challenge arises for stroke survivors as they need to continue their training 
to enhance their ongoing recovery. However, the critical feedback provided by 
therapists during in-clinic therapy becomes less accessible, potentially hindering the 
continuity and effectiveness of the rehabilitation process [8]. 

Recent advancements in eHealth solutions have shown great promise in extending 
therapeutic guidance beyond the clinical setting and integrating into the daily lives of 
patients [9]. With the integration of wearable devices such as inertial measurement 
units (IMUs), the potential arises to design portable eHealth systems independent of 
laboratory environments. Moreover, an eHealth solution based on IMUs could 
provide patients with real-time feedback on crucial gait patterns such as foot 
elevation and forward propulsion [10], [11]. This real-time feedback could empower 
patients to make immediate adjustments to their gait patterns. This offers a 
compelling solution to bridge the gap between traditional in-clinic therapy and 

Abstract

Background
Effective retraining of foot elevation and forward propulsion is essential in stroke 
survivors’ gait rehabilitation. However, home-based training often lacks valuable 
feedback. eHealth solutions based on inertial measurement units (IMUs) could 
offer real-time feedback on fundamental gait characteristics. This study aimed to 
investigate the effect of providing real-time feedback through an eHealth solution 
on foot strike angle (FSA) and forward propulsion in people with stroke.

Methods
Twelve stroke survivors completed five walking trials on an instrumented treadmill: 
A) regular walking (1), B) feedback on FSA, C) feedback on propulsion, D) feedback 
on both FSA and propulsion, and E) regular walking (2). Visual feedback was 
presented through a green-to-red vertical slide bar on a screen in front of the 
participants. Linear mixed models evaluated the impact of feedback on FSA and 
propulsion, considering the sequence of feedback delivery, and potential learning  
or fatigue effects over the trials. Post-hoc pairwise comparisons were performed 
to assess the effect of different feedback types.

Results
Linear mixed models revealed a main effect on FSA and propulsion by feedback on 
FSA and propulsion, respectively. FSA significantly increased from 16.6⁰ in the 
initial regular walking trial to 24.0⁰ during FSA feedback and 23.6⁰ during combined 
FSA and propulsion feedback trials (p<0.001). Forward propulsion significantly 
improved by one third in the feedback on propulsion and combined feedback  
on both FSA and propulsion conditions compared to the first regular walking trial 
(p<0.001).

Conclusions
The positive effect of real-time feedback on FSA and forward propulsion highlight 
the potential of eHealth solutions in tailoring rehabilitation strategies in stroke 
survivors.
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an instrumented treadmill with embedded force plates (Motek Medical, Amsterdam, 
the Netherlands), an eight-camera optical motion capture system (OMCS) (VICON, 
Oxford, United Kingdom), and a wide (180°) screen positioned in front of the treadmill 
replicating a virtual environment. Prior to engaging in any walking trials, participants 
were securely fastened in a non-weight-bearing harness to prevent possible falls.

Participants were equipped with 20 reflective markers for the OMCS, following the 
VICON plug-and-gait lower body model [16], along with 5 IMUs (Xsens MTwAwinda, 
Movella, Enschede) attached to the dorsal side of both feet, frontal shanks, and lower 
back (L4/5) [17]. Data was recorded at a sample frequency of 100 Hz for the OMCS, 
while the force plates recorded at 1000 Hz. All systems were time synchronized by a 
high-low pulse, with the OMCS serving as master. OMCS and force plate data of the 
healthy controls were previously collected using the same methods as in the current 
study [15]. Data of the IMUs were not used in the current study.

Usability of the real-time feedback solution was measured using the Dutch version of 
the System Usability Scale (SUS) [14].

Measurements
After an initial period of familiarization with walking on GRAIL, participants 
performed a series of five walking trials. In the first trial participants were able to 
control the speed of the treadmill by walking at the front of the belt (accelerating)  
or at the back of the belt (decelerating); the self-paced walking mode. During  
this self-paced trial, data recording started after participants indicated they were  
at comfortable walking speed, and stopped after capturing 120 seconds of data. 
The researcher would end the trial by decelerating the treadmill until standing still. 

During the second to fifth trial, participants walked at a fixed speed and were 
provided with feedback on their gait pattern. The fixed speed was set at the average 
comfortable walking speed of the first trial. In trials two and three participants 
received feedback on either the FSA or the generated forward propulsion by a custom 
made GRAIL application. The order of the feedback was randomized across subjects. 
The fourth trial entailed participants receiving feedback on both parameters. Each 
feedback trial started with participants performing ten strides without feedback, 
in which the regular FSA and forward propulsion was computed based on the marker  
data and force plate data, respectively. See the data analysis section below for a 
detailed description. After the ten initial strides, feedback was provided. The feedback 
was provided visually through a green to red vertical slide bar on the GRAIL’s screen in 
front of the subject. Increasing the FSA or forward propulsion led to a disk moving 
towards the green end (top of the slide bar), whereas decreasing the FSA or forward 

self-guided home-based gait training. However, there is currently limited research 
available that focused on assessing the impact of real-time feedback through eHealth 
solutions on the gait patterns of stroke survivors [12].

The successful implementation of any eHealth solution in rehabilitation therapy, 
either in-clinic or at home, depends not only on its effectiveness but also highly on its 
perceived usability by end-users [13], [14]. Involving end-users during the development 
phase of eHealth solutions is critical as it increases the usability and the chances of 
actual implementation. Therefore, the aim of this study is twofold: 1) to investigate 
the direct effect of providing real-time feedback by an eHealth solution on the FSA 
and forward propulsion in stroke survivors, and 2) to study how stoke survivors 
perceive the usability of real-time feedback that can be used by eHealth solutions  
at home.

Methods

Participants
Twelve participants were included from physiotherapy clinics in the Nijmegen region, 
along with online Facebook communities for stroke survivors. Inclusion criteria were 
a stroke incidence of at least 6 months prior, age of 18 years or older, unilateral motor 
impairments, and the capability to walk unassisted for at least 5 minutes. Exclusion 
criteria were insufficient cognitive ability to understand basic instructions, a history 
of orthopedic or other neurologic disorders affecting gait or balance, prior surgery 
to correct drop foot, or an inability to perform ankle flexion-extension movements. 
All participants provided their written informed consent before participation. 

The study protocol was in line with the Declaration of Helsinki and was granted an 
exemption of the Dutch Medical Scientific Research Act (WMO) from ‘METC Oost-
Nederland’ (identification number: 2021-13295).

For reference values of the FSA and forward propulsion of unaffected gait, data 
recorded in a previous study of 20 healthy participants were analyzed [15]. Participants 
had to be between 40 and 90 years old and had to be able to walk for at least two 
minutes without assistance to be included in the study. Exclusion criteria were any 
diseases affecting gait and balance and a BMI > 30 kg/m2.

Materials
The entire measurement protocol was performed on the GRAIL (Gait Real-time 
Interactive Analysis Lab, (Motek Medical, Amsterdam, the Netherlands)). The GRAIL is 
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Forward propulsion is generally characterized by either the peak or impulse (time 
integral) of the anterior-posterior ground reaction force (GRF), both normalized for 
bodyweight. In this study, we used the impulse as it is independent of walking speed 
in contrast to the peak GRF [18]. This impulse was calculated by the time integral of 
the bodyweight-normalized anterior-posterior GRF from the breaking-to-propulsion 
transition till terminal contact (TC) (equation 5 and Figure 2) [17], [18].

Forward propulsion = GRFAP direction dtTC
BPT  

	� with dt = 1/sample frequency, BPT = breaking-to- propulsion, 
TC = terminal contact, AP = anterior-posterior.

(5)

propulsion led to the disk moving towards the red end of the bar (bottom of the slide 
bar). The fifth walking trial was a self-paced trial similar to the first trial. All walking 
trials lasted for at least 120 seconds.

After completing all five walking trials, participants were released from the harness, 
and all markers and IMUs were removed. Subsequently, participants filled out the 
SUS questionnaire. They were instructed to focus their evaluation exclusively on the 
eHealth solution for real-time feedback with the IMUs used for data capture.

The data of the healthy controls was previously collected during a self-paced walking 
trial [15]. To this end, a protocol similar to the measurement protocol for the first 
self-paced trial of the current study was used.

Data processing
All code for data processing and analysis is available from: https://github.com/Sint-
Maartenskliniek/MovingReality (Release: “Effect study”).

Data was collected through VICON Nexus software (version 2.4). All subsequent data 
processing and analyses were performed in Python 3.10. Upon further analysis, 
OMCS data was filtered by a second-order low-pass Butterworth filter, with a 15 Hz 
cut-off frequency.

Data analysis
The foot angle was defined as the angle between the foot segment and the walking 
surface (Figure 1 and [17]), which was calculated according to equations 1 and 2 [14].

Foot segment = position toe marker – position heel marker (1)

Foot angle = tan-1 (�foot segment vertical component / 
foot segment walking direction component)

(2)

The foot angle was considered as zero-degrees during foot flat phase by subtracting 
the mean foot angle measured in the first 10 mid-stance periods and subsequently 
converted from radians to degrees according to equation 3.

Foot angle = (foot angle – mean (foot angle mid-stance of stride 1 to 10))*180/π (3)

Finally, the FSA was determined as the foot angle at each initial contact (IC) according 
to equation 4.

Foot strike angle = foot angle at IC (4)

Figure 1. The foot strike angle.

Figure 2. Forward propulsion characterized by the bodyweight normalized anterior-posterior 
ground reaction force from the breaking-to-propulsion transition till terminal contact.

foot strike angle 
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Effect of feedback on the FSA
For each stroke participant the mean and standard deviation of the FSA for each trial 
is shown in Table 2 and Figure 3. The FSA in healthy participants (29.0±8.7 degrees), 
was significantly different (p<0.01) from the FSA of the first regular walking trial in 
people with stroke (15.6±7.3 degrees).

Table III shows the output of the linear mixed model, revealing: 1) a significant main 
effect of feedback type, meaning that the type of feedback has an effect on the FSA,  
2) no interaction effect between the order in which feedback was given (first feedback  
on FSA or propulsion) and feedback type, and 3) a main group effect, meaning  
that there was a different intercept between the group that received first feedback 
on propulsion compared to the group that first received feedback on the FSA, 
independent of the trial. Post-hoc pairwise comparison revealed a significant increase  
in FSA for all trails compared to the first regular trial (p<0.05). No significant difference  
was found between the FSA feedback trial and the trial with feedback on both the  
FSA and forward propulsion. Table 4 shows the output of the post-hoc pairwise 
comparison. 

Statistical analysis
For each trial, the mean FSA and forward propulsion were calculated over the first 
100 steps of a trial after setting the reference values in the first 10 steps. Differences 
in FSA and forward propulsion between healthy individuals and people with stroke 
were tested with an unpaired samples t-test.

Linear mixed models were used to determine the effect of feedback type on the FSA 
and propulsion. Fixed effects were feedback type and the order in which the different 
types of feedback were given. Random effects of and for the intercept and slope were 
included to take learning and fatigue effects into account, as well as participant ID. 
Post-hoc pairwise comparisons were performed to estimate the effect of the different 
types of feedback. Effects were significant in case the adjusted p value for multiple 
comparisons was <0.05. All statistical analysis was performed in R4.1.2 (R core Team, 
2021, Vienna, Austria), with its lme4 for model definition and grafify for post-hoc 
comparisons packages.

The individual SUS scores were visualized by a histogram plot and the median and 
interquartile range were calculated. The SUS scores were compared to the minimum 
score of 68 points for the feedback system to be labelled as ‘usable’ or ‘not usable’ [19]. 
In addition, the achieved difference on the FSA and forward propulsion were 
correlated (Pearson correlation) to the SUS score, to explore if the ability to improve the  
FSA or forward propulsion were related to the SUS score. To this end, the difference 
between the first regular walking trial and the trial with feedback in FSA and forward 
propulsion was calculated.

Results

Participant characteristics
Prior to this study, all 12 participants (7 male / 5 female) with a mean age of 61 (SD: 9) 
years had participated in a post-stroke gait rehabilitation training program. 
Participants experienced either an ischemic stroke (n=8) hemorrhagic stroke (n=2), or 
unknown cause (n=2). The median time since stroke onset was 24.5 (range: 6-210) 
months. The average comfortable gait speed was 1.0 (SD: 0.3) m/s. Table 1 shows the 
participant characteristics. All participants were able to perform all trials, but due to 
poor marker visibility during the FSA feedback trial for participant PP006, this trial 
had to be excluded from further analysis.

Participant characteristics of the 20 healthy individuals included in the previous 
study are also shown in Table 1 [15]. Healthy participants had a smaller body weight 
and a higher gait speed (p<0.05) compared to the stroke participants.

Table 1. Participant characteristics.

Stroke participants Healthy controls

N 12 20

Gender (male / female) 7 / 5 10 / 10

Age (mean ± SD years) 61.0 ± 9.5 59 ± 12

Height (mean ± SD cm) 176.4 ± 8.5 174 ± 7.2

Weight (mean ± SD kg)* 85.0 ± 14.7 75.0 ± 8.0

Affected side (left / right) 6 / 6 -

Stroke type (ischemic / hemorrhagic / unknown) 8 / 2 / 2 -

Time since stroke onset (median (IQR) months) 24.5 ± (11; 76.5) -

Comfortable gait speed (mean ± SD m/s)* 1.0 ± 0.3 1.3 ± 0.1

* �Weight and gait speed were significantly (p<0.05) different between the stroke participants and  
healthy controls.
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Effect of feedback on the propulsion
Table 5 and Figure 4 shows the mean and standard deviation of the bodyweight 
normalized forward propulsion for each stroke participant for each trial. The forward 
propulsion in healthy participants (0.32±0.058 N/kg∙s) was significantly larger than 
the forward propulsion in people with stroke measured during the first regular 
walking trial (0.24±0.066 N/kg∙s).

Figure 3. Mean and standard deviation of the FSA per participant in each of the trials. Mean of 
the FSA across subjects is shown in black.

Table 2. Mean±SD of the FSA (degrees) measured in each trial for each participant.

Participant ID Regular 
walking  

(first time)

Feedback on 
FSA

Feedback on 
propulsion

Feedback 
on FSA and 
propulsion

Regular 
walking 

(second time)

PP001 9.9±2.6 16.2±3.4 13.0±4.2 14.0±3.0 16.2±2.6

PP002 25.9±11.0 37.0±3.2 32.9±1.2 34.0±1.5 33.3±4.6

PP003 6.0±2.1 8.1±3.4 6.7±3.5 8.2±2.8 8.2±3.0

PP004 25.4±4.6 29.9±2.9 27.4±2.2 31.6±2.3 29.3±2.5

PP005 9.5±4.1 25.1±9.8 17.8±4.5 23.1±7.4 31.1±3.1

PP006 21.1±3.4 - 19.1±2.3 19.4±2.5 18.6±4.5

PP007 10.5±3.8 19.1±8.6 8.6±3.1 16.9±6.6 19.4±3.2

PP008 20.5±5.4 27.5±3.7 27.5±3.5 28.6±3.3 27.4±4.0

PP009 10.1±4.9 29.5±5.1 16.1±5.3 20.4±7.5 16.0±5.4

PP010 21.9±3.5 27.2±5.0 30.0±3.2 33.9±5.2 28.0±2.5

PP011 7.5±3.7 14.5±3.2 12.6±3.6 16.3±3.2 11.4±4.5

PP012 18.5±2.5 24.2±3.7 20.1±2.2 26.4±3.4 21.2±1.4

Mean (from linear 
mixed model) ± SE

16.6±1.88 24.0±1.92 20.3±1.88 23.6±1.88 22.3±1.88

Mean±SD of the FSA. Marker visibility in the trial with feedback on the FSA of participant PP006 was very  
poor and therefore discarded for further analysis. The ‘Mean±SE’ row shows the mean and standard error  
for each trial calculated by the linear mixed model.

Table 3. Statistics of the model fit of the linear mixed model for the FSA.

Fixed effects Estimate 2.5% 97.5% t-value df p-value

Intercept 10.578 6.226 14.930 4.764 17.851 0.000

Feedback on FSA 9.415 6.438 12.391 6.199 46.978 0.000

Feedback on propulsion 4.050 1.074 7.027 2.667 46.978 0.010

Feedback on FSA  
and propulsion

7.613 4.636 10.589 5.013 46.978 0.000

Regular walking  
(second time)

7.959 4.983 10.936 5.241 46.978 0.000

Group first feedback  
on propulsion

11.969 5.227 18.711 3.480 17.851 0.003

Feedback on FSA : Group 
first feedback on propulsion

-3.876 -8.689 0.938 -1.578 47.088 0.121

Feedback on propulsion : 
Group first feedback on 

propulsion

-0.682 -5.293 3.930 -0.290 46.978 0.773

Feedback on FSA and 
propulsion : Group first 
feedback on propulsion

-1.081 -5.693 3.530 -0.460 46.978 0.648

Regular walking 
(second time) : Group first 

feedback on propulsion

-4.418 -9.030 0.193 -1.878 46.978 0.067
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The linear mixed model revealed (See Table 6): 1) a significant main effect of feedback 
type, meaning that the type of feedback has an effect on the forward propulsion, 2) 
no interaction effect between the order in which feedback was given (first feedback 
on propulsion or FSA), and 3) no main group effect, meaning that the group that 
received first feedback on propulsion had a similar propulsion compared to the group 
that first received feedback on the FSA, independent of the trial. Post-hoc pairwise 
comparison revealed a significant increase in forward propulsion for all trails 
compared to the first regular trial (p<0.05), except for the FSA feedback trial. No 
significant difference was found between the forward propulsion feedback trial and 
the trial with feedback on both the FSA and forward propulsion. Table 7 shows the 
output of the post-hoc pairwise comparison.

Table 4. Post-hoc pairwise comparison of the FSA estimates from the linear  
mixed model.

Comparison Estimate SE df t-ratio p-value

Regular walking (first time) - 
Feedback on FSA

-7.477 1.35 56.8 -5.545 <0.001

Regular walking (first time) - 
Feedback on propulsion

-3.709 1.29 56.6 -2.873 0.014

Regular walking (first time) - 
Feedback on FSA and propulsion

-7.072 1.29 56.6 -5.477 <0.001

Regular walking (first time) - Regular 
walking (second time)

-5.750 1.29 56.6 -4.453 <0.001

Feedback on FSA - Feedback on 
propulsion

3.767 1.35 56.8 2.794 0.014

Feedback on FSA - Feedback on FSA 
and propulsion

0.405 1.35 56.8 0.300 0.765

Feedback on FSA - Regular walking 
(second time)

1.727 1.35 56.8 1.280 0.257

Feedback on propulsion - Feedback 
on FSA and propulsion

-3.363 1.29 56.6 -2.604 0.020

Feedback on propulsion - Regular 
walking (second time)

-2.041 1.29 56.6 -1.580 0.171

Feedback on FSA and propulsion - 
Regular walking (second time)

1.322 1.29 56.6 1.024 0.345

Degrees-of-freedom method: Kenward-Roger, p value adjustment: fdr method for 10 tests.

Table 5. Mean±SD of the bodyweight normalized propulsion (N/kg∙s) measured  
in each trial for each participant.

Participant ID Regular 
walking (first 

time)

Feedback on 
FSA

Feedback on 
propulsion

Feedback 
on FSA and 
propulsion

Regular 
walking 

(second time)

PP001 0.26±0.11 0.47±0.13 0.48±0.14 0.48±0.12 0.37±0.13

PP002 0.35±0.06 0.34±0.02 0.42±0.04 0.39±0.03 0.38±0.03

PP003 0.10±0.09 0.12±0.07 0.15±0.11 0.14±0.12 0.19±0.14

PP004 0.26±0.03 0.27±0.04 0.31±0.05 0.31±0.04 0.29±0.03

PP005 0.19±0.06 0.31±0.12 0.29±0.09 0.35±0.11 0.38±0.04

PP006 0.25±0.02 - 0.22±0.02 0.22±0.02 0.25±0.02

PP007 0.19±0.07 0.22±0.10 0.25±0.07 0.21±0.09 0.25±0.08

PP008 0.29±0.04 0.29±0.03 0.36±0.05 0.37±0.05 0.32±0.04

PP009 0.24±0.06 0.23±0.12 0.26±0.05 0.27±0.10 0.27±0.08

PP010 0.22±0.05 0.23±0.07 0.46±0.10 0.40±0.09 0.28±0.07

PP011 0.21±0.04 0.23±0.04 0.24±0.06 0.24±0.04 0.24±0.05

PP012 0.32±0.03 0.30±0.03 0.40±0.05 0.38±0.04 0.33±0.03

Mean (from linear 
mixed model) ± SE

0.245± 0.025 0.266± 0.026 0.326± 0.025 0.318± 0.025 0.299± 0.025

Mean±SD of the time integrated, bodyweight normalized forward propulsion. The ‘Mean±SE’ row shows the 
mean and standard error for each trial calculated by the linear mixed model.
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Perceived usability of the feedback
Figure 5 shows the individual SUS scores of all participants. The SUS scores for the 
real-time feedback method, had a median score of 84 (range: 65 – 100). Eleven out of 
twelve participants scored the SUS with at least 68 points, meaning that they found 
the feedback method usable in its current state. The Pearson correlation between 
the SUS scores and the achieved improvement on the FSA and forward propulsion 
was -0.18 and 0.39, respectively.

Figure 4. Mean and standard deviation of the forward propulsion per participant in the trial 
with and without feedback. Mean of the forward propulsion across subjects is shown in black.

Table 6. Statistics of the model fit of the linear mixed model for the propulsion.

Fixed effects Estimate 2.5% 97.5% t-value df p-value

Intercept 0.212 0.154 0.270 7.164 18.171 0.000

Feedback on propulsion 0.079 0.038 0.119 3.802 46.973 0.000

Feedback on FSA 0.055 0.014 0.05 2.640 46.973 0.011

Feedback on FSA and 
propulsion

0.082 0.041 0.122 3.939 46.973 0.000

Regular walking  
(second time)

0.078 0.037 0.118 3.745 46.973 0.000

Group first feedback  
on propulsion

0.066 -0.024 0.156 1.433 18.171 0.169

Feedback on propulsion : 
Group first feedback  

on propulsion

0.005 -0.058 0.067 0.144 46.973 0.886

Feedback on FSA :  
Group first feedback  

on propulsion

-0.068 -0.134 -0.003 -2.036 47.089 0.047

Feedback on FSA and 
propulsion : Group first 
feedback on propulsion

-0.018 -0.081 0.044 -0.575 46.973 0.568

Regular walking (second 
time) : Group first 

feedback on propulsion

-0.048 -0.111 0.015 -1.506 46.973 0.139

Table 7. Posthoc pairwise comparison of the forward propulsion estimates from  
the linear mixed model.

Comparison Estimate SE df t-ratio p-value

Regular walking (first time)  
- Feedback on propulsion 

-0.081 0.018 56.6 -4.603 <0.001

Regular walking (first time)  
- Feedback on FSA

-0.021 0.018 56.8 -1.119 0.318

Regular walking (first time)  
- Feedback on FSA and propulsion

-0.07 0.018 56.6 -4.109 <0.001

Regular walking (first time)  
- Regular walking (second time)

-0.053 0.018 56.6 -3.032 <0.001

Feedback on propulsion  
- Feedback on FSA

0.060 0.018 56.8 3.288 <0.001

Feedback on propulsion  
- Feedback on FSA and propulsion

0.009 0.018 56.6 0.494 0.623

Feedback on propulsion  
- Regular walking (second time)

0.028 0.018 56.6 1.570 0.174

Feedback on FSA  
- Feedback on FSA and propulsion

-0.052 0.018 56.8 -2.815 0.013

Feedback on FSA  
- Regular walking (second time)

-0.033 0.018 56.8 -1.785 0.133

Feedback on FSA and propulsion  
- Regular walking (second time)

0.019 0.018 56.6 1.076 0.318

Degrees-of-freedom method: Kenward-Roger, p value adjustment: fdr method for 10 tests.
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In line with previous research, the generated forward propulsion was significantly 
lower in the individuals with chronic stroke compared to the healthy controls [5], [6]. 
We found a substantial improvement of approximately one-third with feedback on 
the forward propulsion, bringing it to a level similar to the healthy control group. Out 
of the twelve participants, seven showed considerable improvement (> 0.05 N/(kg∙s)), 
while four showed a slight increase. These findings align with previous research by 
Santucci et al [12], who found that the peak forward propulsion increased with 0.05 
N/kg during walking trials with audio-visual feedback on the forward propulsion. 
Furthermore, in the study of Genthe et al. [9], the results revealed that a short-term 
training effect was already present with larger peak forward propulsion after an 
18-minute training session compared to the baseline measurement before walking 
with feedback. Similarly, in our study, there was an increased forward propulsion in 
the second regular walking trial without feedback compared to the first regular 
walking trial without feedback. The consistent results emphasize the positive impact 
of feedback on forward propulsion. However, it is important to note that one 
participant was not able to increase forward propulsion with feedback. While no 
factors such as walking speed or time since stroke could explain this outlier, individual 
factors or possibly fatigue might influence the response to feedback, necessitating 
further exploration into patient-specific characteristics.

Surprisingly, even when feedback was directed towards the forward propulsion, 
participants still demonstrated an improvement in the FSA, and, to a lesser extent, 
vice versa. This suggests a nuanced interplay between gait characteristics, implying 
that interventions targeting specific gait parameters might also induce other positive 
changes in the gait pattern after stroke [22], [23]. Although most participants 
improved both the FSA and propulsion in the trial with feedback on both parameters, 
they found this condition challenging. The difficulty seems to stem from the need to 
divide attention between two intricate gait characteristics, further complicated by 
the similarity in the provided feedback (both a moving disk along the vertical sliding 
bar). Previous research by Day [24], Spencer [25], and Powers [26], address the 
importance of the modality and frequency of feedback in gait training. The results of 
this study underscore the importance of optimizing the design and presentation of 
feedback to enhance the user experience, particularly when addressing multiple 
parameters simultaneously. While the SUS scores did not explicitly suggest this 
design improvement, the statements in the SUS prompted participants to mention it 
while completing the questionnaire. Although participants felt fairly confident using 
the system, the SUS revealed that they expected needing assistance from someone 
with technical skills to get the eHealth solution up and running. Hence, eHealth 
solutions intended for use beyond the clinical setting must be exceptionally robust 
and user-friendly, enabling patients to don and doff the system independently.

Discussion

This study aimed to investigate the effect of real-time feedback on the FSA and 
forward propulsion in individuals with stroke, while also assessing the usability of  
a real-time feedback system. Feedback improved the FSA and propulsion, and 
participants found the feedback system usable. 

The included individuals with chronic stroke had a significantly lower FSA compared 
to the healthy controls indicating an impaired foot elevation during the loading 
response phase. The FSA of 16 degrees observed in the current study, aligns with 
individuals with stroke who are prescribed an ankle foot orthosis [7], [20], [21]. 
Although unilateral motor impairments affecting gait was an inclusion criterium, the 
walking ability varied among participants as indicated by the comfortable gait speed 
ranging between 0.4 and 1.6 m/s. When feedback on the FSA was provided, an average 
improvement of 7.5 degrees in FSA was seen, resulting in a FSA comparable with the 
healthy controls. Similar improvements in FSA were seen when feedback was 
provided on both FSA and propulsion. Moreover, the improvements in FSA were in 
line with interventions such as an ankle foot orthosis and electrical functional 
stimulation [20], [21]. It is important to acknowledge the considerable variability in 
the FSA during regular walking among participants and the heterogeneity in the 
magnitude of improvement when provided with feedback. Nevertheless, nine of the 
12 participants were able to substantially (>5 degrees) improve the FSA in the walking trials 
with real-time feedback on the FSA. Furthermore, the magnitude of improvement during 
the feedback trial appeared unrelated to the FSA during regular walking. This suggests  
that people with various severity of reduced FSA could benefit from eHealth solutions 
providing feedback on this gait characteristic.

Figure 5. Individual SUS scores. Scores above the minimum value of 68 points (horizontal line) to 
be labelled as ‘usable’ were marked green, scores below 68 points (‘not usable’) were marked red.
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To provide feedback during overground walking in the patient’s own environment, 
the feedback should be based on wearable IMUs rather than the highly advanced and 
costly GRAIL system used in this study. However, our aim was to investigate the effect 
of feedback on the gait pattern in people with stroke. Therefore, we choose to provide 
accurate feedback on the certainly true FSA and forward propulsion. While the FSA 
has been validly measured with IMUs, there is no usable method for forward 
propulsion with these devices in people with stroke [17]. Future research should focus 
on identification of suitable parameters to assess propulsion and other relevant gait 
parameter characteristics. Furthermore, feedback modalities in terms of visual, 
auditory or haptic cues have not been investigated and warrant further attention in 
people with not only motor- but also possible sensory deficits [27].

Despite the promising findings, this study has inherent limitations. The inclusion 
criteria focused on patients with gait problems with some remaining ability to 
actively dorsiflex the ankle. As a result, some participants had no substantial 
limitations in the FSA and/or forward propulsion. Even though all participants 
benefited from the feedback, this could potentially limit the generalizability of the 
results to a broader stroke survivor population. However, it was necessary to include 
individuals with ‘some reserve function’ to study the potential of eHealth solutions as 
a training tool. Individuals with no remaining function have to rely on other solutions, 
such as an ankle foot orthoses or implanted peroneal functional electrical stimulator 
[1]. Furthermore, the study only assessed the immediate effect and short-term 
aftereffects of feedback. Since the FSA and forward propulsion improved significantly 
in the short term between the first and last trials without feedback, future research 
should explore the long-term impact of continued training for a more comprehensive 
understanding of the intervention’s efficacy.

Conclusion

In conclusion, this study provides valuable insights into the immediate effects of 
real-time automated visual feedback on gait parameters in chronic stroke survivors. 
The observed positive impact of real-time feedback on the FSA and the generated 
forward propulsion in combination with good usability scores from almost every 
participant underscore the potential of eHealth solutions in personalized gait 
rehabilitation.
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Summary and general discussion

The general aim of this thesis was to develop and evaluate IMU-based algorithms to 
assess and provide feedback on gait characteristics in people with gait impairments. 
This chapter starts with a summary of the main findings followed by a general 
discussion with directions for future research.
Summary

The aim of Chapter 2 was to develop and validate an IMU-based algorithm to measure 
spatiotemporal gait characteristics in normal and affected gait patterns. To this end, 
both healthy participants and people with stroke performed walking tests while 
equipped with IMUs and simultaneously measured with the gold standard for 
movement analysis: optical motion capture. The IMU-based algorithm demonstrated 
comparable or better performance in slower, impaired gait compared to faster, 
unaffected, gait patterns. At a group level, the difference between the IMU-based 
and gold standard stride time was 0.00±0.01 s for healthy participants and 0.00±0.04 
s for stroke participants. For healthy participants, the IMU-based algorithm 
underestimated the stride length with 0.03±0.04 m, while 0.00±0.03 m difference 
was found in the stroke population. However, while the accuracy of the spatiotemporal 
gait characteristics was good in both healthy individuals and those affected by stroke 
on a group level, the error increased at higher gait speeds. In walking speeds up to 1.2 
m/s, the accuracy of the spatiotemporal gait characteristics was good for both 
participant groups. While the comfortable walking speed of the stroke participants 
was up to 1.2 m/s, the comfortable waking speed of the healthy participants reached 
up to 1.65 m/s. At these higher gait speeds, errors in spatial gait characteristics 
increased up to 13 cm, while temporal gait characteristics remained consistently 
excellent.

In Chapter 3, the effect of accelerating and decelerating strides around turns on the 
assessment of gait characteristics was examined. By including only strides in the 
analysis of gait characteristics that are not influenced by the acceleration and 
deceleration around turns, a fairer interpretation of the gait capacity and a better 
comparison between settings is ensured. While accelerating and decelerating strides 
had only a very limited effect on the mean spatiotemporal gait characteristics, the 
variance of the gait characteristics was substantially influenced by these strides. To 
illustrate, including the accelerating and decelerating strides deviated only 0.03 m/s 
from the mean steady-state gait speed of 1.01 m/s, while including these strides 
doubled the variance from 0.04 m/s to 0.08 m/s compared to the steady-state 
portion. In depth analysis of strides around turns showed that the first two strides 
around each turn differed significantly from the steady-state portion. Therefore, 
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native language [4,5]. In addition, the applicability of the D-SUS to medical 
technologies was validated. During the translation phase, participants filled out the 
pre-final version of the D-SUS while thinking aloud. This revealed misunderstanding 
of three items due to long sentence structures, caused by additional verbs that are 
not commonly used in the (more direct) Dutch language. These three items were 
reformulated by a shorter version with the same conceptual meaning. In this phase, 
it became also evident that the role of the user affects their understanding of different 
items. For example, patients name their therapists as system experts, while 
therapists identify the technical staff of the hospital as system experts. In the 
validation phase of the study, users of different rehabilitation systems and eHealth 
applications filled out the final version of the D-SUS twice. The results indicate that 
the Dutch version of the SUS can be used on a group level, with acceptable internal 
consistency and good test-retest reliability. However, some caution is warranted 
with the interpretation of individual scores due to a relatively high repeatability 
coefficient. The final, validated, translation of the D-SUS facilitates testing the 
usability of IMUs to assess and provide feedback on gait characteristics among native 
Dutch speakers.

In Chapter 7, the effect of real-time feedback on the foot-strike angle and propulsive 
force in people with stroke was investigated. Feedback on the foot-strike angle was 
effective, stimulating patients to enhance their foot-strike angle by 7.5 degrees on 
average. However, responses to feedback on the propulsive force varied, with some 
individuals successfully increasing the forward propulsion by 33% while others 
struggled to do so. Notably, participants reported positive experiences with the 
feedback system and expressed willingness to undergo further gait training using 
this technology.

discarding these two strides around each 180-degree turn is advised for analysis of 
steady-state gait. The ability to select strides representative for steady-state gait 
also opens up the possibility to measure gait capacity over shorter, more feasible, 
walking trajectories, which can be walked back and forth multiple times.

In Chapter 4, I extended and validated the IMU-based algorithm of Chapter 2 to 
estimate the foot strike angle and forward propulsion. Assessment of the foot strike 
angle and forward propulsion allows for a more comprehensive understanding of the 
gait pattern, which is especially relevant in patients with drop foot after a stroke and 
limited ability to generate push-off force. While the orientation of an IMU could be 
used to provide an estimate of the foot strike angle, IMUs cannot measure force. 
Therefore, based on previously found promising results, eight parameters were 
evaluated as indicators for forward propulsion: the stride length, the maximum 
angular velocity, and angular acceleration during the stance phase of both the foot 
and shank, the maximum shank linear acceleration, and the foot and shank angle 
upon terminal contact. While the foot strike angle could be accurately assessed by an 
IMU (1.4±2.3 degrees), the propulsion was found not to be adequately represented by 
any of the studied parameters, suggesting the need for a more sophisticated 
approach.

In Chapter 5, differences in gait, turn, and sit-to-stand characteristics, between 
individuals with knee osteoarthritis who were and were not candidates for knee joint 
replacement surgery were explored. The IMU-based algorithm developed in Chapter 
2 was used to obtain gait speed, stride time, and step time from the steady-state 
portion of gait (Chapter 3). Additionally, we calculated the trunk movements in the 
coronal plane during walking, the peak turn velocity, and lean angle during 
sit-to-stand transfers [1]. Individuals who were candidates for knee joint replacement 
surgery had a slight, but significant, lower gait speed compared to the individuals 
without an indication for surgical treatment. None of the other studied parameters 
showed differences between these groups. However, substantial within-group 
heterogeneity was observed in both groups. Therefore, an individualized approach 
with follow-up over time might be more helpful than a single measurement in the 
decision-making process for surgical intervention.

Good system usability increases the likelihood of actual adoption of a system by the 
intended user [2]. Therefore, a usability assessment of the IMU-based gait analysis 
and feedback system holds valuable information on the requirements for 
implementation. The international standard to assess the usability of a system is the 
System Usability Scale (SUS) [3]. In Chapter 6 I translated the System Usability Scale to 
Dutch (D-SUS), since it is important to use a questionnaire in the target population’s 
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Chapter 2 also demonstrated that spatial gait characteristics can be measured validly 
in both normal and pathological gait patterns on a group level. Nonetheless, our 
results suggested that the accuracy of the estimation of spatial gait characteristics 
depends on gait speed. At gait speeds over 1.2 m/s, an underestimation of up to 13 
cm/s by the IMU-based algorithm was found. These higher gait speeds were 
associated with stride lengths over 1.3 m, which were also underestimated up to 13 
cm. While this error is in line with previous studies reporting differences of 7 to 18 cm 
in stride length from the gold standard [6–8], it is larger than the clinically relevant 
change of 7.2 to 11.1 cm reported in the literature [13,14]. This measurement error is an 
issue of concern when describing or comparing groups of individuals who walk at 
high gait speed or when monitoring individuals over time to measure treatment 
effects. Therefore, IMU-based algorithms for the assessment of spatial gait charac-
teristics still need further improvements. 

In the following paragraphs, I will discuss potential improvements to the algorithm. 
First, I will propose improvements within its current one-size-fits-all design, such as 
improvements in the drift compensation process. Secondly, I will discuss disease-spe-
cific or gait pattern-specific adjustments to further refine the algorithm’s 
performance.

Drift compensation process and accuracy of spatial gait characteristics
One aspect of the algorithm that might be improved to achieve higher accuracy in 
spatial metrics is the drift compensation process. IMU signals inherently include 
noise, which leads to sensor drift. As the signal noise is integrated into the measured 
acceleration, the error accumulates. This causes the estimated velocity and position 
to deviate from their true values over time. Sensor drift can be minimized through 
zero velocity updates, where the velocity is forcibly set to zero during periods when it 
is certain to be zero [15]. Zero velocity updates are sometimes combined with an 
additional correction of the estimated drift between two subsequent zero velocity 
update periods [16,17]. Both types of drift compensation processes rely on specific 
assumptions and choices, which will be discussed in the following paragraphs. The 
algorithm in this thesis used such a combined approach.

A crucial decision in the zero velocity updates concerns the timing of these updates, 
which can significantly affect the final gait characteristics. Zero velocity updates are 
often taken over the entire period or at a specific instant within the stance phase 
[16,18]. During the development of the algorithm in Chapter 2 of this thesis, I assumed 
that the foot velocity is zero throughout the foot flat period (midstance to heel off 
[19], see also Figure 1 in Chapter 1). While there was no direct indication that this 
assumption was invalid, the observed underestimation in stride length of up to 13 cm 

General discussion

Movement analysis with IMUs is quick and easy to perform. In combination with 
appropriate processing algorithms, IMUs can provide a comprehensive, objective 
assessment of a patient’s walking capacity [6–9]. Furthermore, IMUs can facilitate 
real-time assessment in daily life, enabling targeted feedback to train specific aspects 
of the gait pattern [10–12]. The findings in the studies of this thesis led to several 
points for discussion regarding the potential of IMU-based gait analysis. Additionally, 
I will discuss some future perspectives on IMU-based gait assessment and the 
potential to provide feedback on gait patterns.
Gait assessment with IMUs

Gait assessment and, particularly the assessment of spatiotemporal gait characteristics, 
has a long-standing history. Nowadays, several measurement systems are available 
for gait assessment, such as optical motion capture, video-based assessment, pres-
sure-sensitive walkways, and wearable sensors. Important aspects of these systems 
are their validity, reliability, and responsiveness for each of the gait characteristics 
they claim to measure. In this thesis, I developed and validated an IMU-based 
algorithm to estimate spatiotemporal gait characteristics (Chapter 2) and the foot 
strike angle (Chapter 4).

Chapter 2 of this thesis showed that temporal gait characteristics can be measured 
validly in both healthy participants and in people with affected gait patterns due to 
stroke. In both groups, the gait events and resulting temporal gait characteristics 
were measured with high validity, with errors in the order of the measurement error. 
This is in line with results from previous studies in healthy [9] and pathological gait 
[6]. However, in affected gait patterns, accurate gait event detection was not 
consistently achieved (Chapter 2). For example, in individuals with a shuffling gait 
pattern, where there is no distinct swing phase and continuous contact of the foot 
with the ground, the IMU signal-to-noise ratio decreases while the number of peaks 
increases. Consequently, the algorithm erroneously identified gait events at signal 
peaks within the forward motion of the foot. A potential remedy for this issue is to 
exclude the period of forward motion as the possible instant of a gait event for this 
type of gait. Similarly, in people with a pronounced drop foot, the algorithm 
encountered challenges in identifying initial contact events. The absence of a heel 
strike during initial contact caused deviations in the angular velocity signal used for 
gait event detection. However, the subsequent foot orientation changes after initial 
toe contact and could be used to identify a flat foot stance phase. Therefore, using the 
first integration of the angular velocity as an estimate of the foot orientation might 
be more accurate than the angular velocity or acceleration in this type of gait pattern 
and should be further explored in future research.
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mediolateral angular velocity and vertical acceleration signals (see Figure 1 in Chapter 
2). However, in individuals with a gait impairment, this assumed cyclical pattern 
might not always be present. For example, in people with stroke who experience 
severe drop foot, the movement of the foot during the swing phase results in a 
deviating cyclical pattern of the angular velocity. Due to the foot not being lifted 
during the swing phase, the positive peak during this phase and the following 
negative peak due to a normal heel strike are not present. Instead, due to the 
orientation of the foot, initial contact will be made with the toe (see Figure 5 in 
Chapter 1), followed by placing the heel on the ground, resulting in a (small) positive 
peak around the initial contact event.

An alternative approach is to develop disease or gait pattern-specific algorithms. 
Disease-specific algorithms operate on the assumption that individuals with the 
same disease exhibit similar gait patterns, which likely differ from people with 
unimpaired gait or other pathological conditions. For example, in previous research 
the shank of children with cerebral palsy was expected not to move solely in the 
sagittal plane during the stepping motion, based on the typical gait patterns seen in 
this disease [19]. Therefore, the combined angular velocity around all three axes was 
used to identify gait events in this study [19]. Similarly, in people with Parkinson’s 
disease with a shuffling gait pattern, it is likely that the angular movements of the 
lower limbs are limited. A previous study in this population showed promising results 
on algorithms to identify gait events based on the shank acceleration [18]. However, 
different types of gait impairments might be present within a specific disease. This is 
certainly the case for people with stroke, who can exhibit stiff knee gait, drop foot, 
and a range of compensation strategies [20]. These different gait impairments result 
in different movement patterns, which are captured by the IMUs by deviating cyclical 
patterns (see also Chapter 1). Even though the algorithm developed in this thesis was 
designed as a one-size-fits-all general algorithm, a certain cyclical pattern is assumed 
to be present to some extend in the IMU data. The variability in gait patterns within 
the stroke population resulted in a variety of signal patterns that are more or less 
similar to this assumed cyclical pattern. This might explain the relatively wide-spread 
performance by the algorithm within the stroke group in Chapter 2. Therefore, the 
variability in gait patterns within diseases suggests that algorithms could be better 
optimized for specific gait patterns that might be observed across different diseases.

A gait pattern-specific approach requires a gait pattern recognition detection step, 
combined with a pattern-specific gait event detection method and spatial gait 
parameter calculation. For example, in people with a drop foot, the peak of the 
mediolateral angular velocity from foot mounted IMUs is minimal or absent while 
this peak angular velocity is highly accurate for detecting gait events in healthy 

at high speed (>1.2 m/s) suggests that there may have been movement during the 
assumed stationary phase. An alternative approach is to apply the zero velocity 
updates at a single instant during the foot flat phase. However, this method might not 
fully compensate for drift, since new drift begins to accumulate immediately after 
the zero velocity update. As a result, this approach might result in an overestimation 
of the spatially dependent gait characteristics.

The second part of the drift compensation process involves estimating and 
compensating for the drift that occurs during two subsequent zero velocity updates 
(e.g., during the swing). The estimation of this drift is based on the assumption that, 
during the flat foot phases (e.g. zero velocity update periods), the foot remains at the 
same vertical position with minimal movement (e.g. flat on even ground) [16,17]. 
Therefore, any measured change is assumed to be due to signal drift. Two common, 
but contrasting, assumptions for estimating drift between two foot flat periods are: 
1) drift increases linearly between two foot flat periods [16], and 2) drift increases 
non-linearly between two foot flat periods, with less drift just after the first foot flat 
period compared to just before the subsequent foot flat period [17]. The algorithm 
used in this thesis operates based on the second assumption. The underestimation of 
spatial gait characteristics at high gait speeds found in Chapter 2 suggests that this 
approach may have led to an overestimation and overcompensation of drift between 
the zero velocity updates.

Although a previous review has described various methods currently used for drift 
compensation [15], evaluation of the effect of these methods on spatial gait charac-
teristics is lacking. Assuming that the underestimation of spatial gait characteristics 
in Chapter 2 was the result of inadequate drift compensation, the accuracy most 
likely depends on the stride length. Therefore, I recommend studying the effect of 
drift compensation methods on the accuracy of the spatial gait characteristics. To 
this end, I propose to study the effect of the timing of the zero velocity updates and 
drift estimation methods while participants walk with various stride lengths and at 
various gait speeds. This could result in a single best combination of a zero velocity 
update timing and a drift estimation method, but this could also show that different 
combinations are most appropriate for different gait speeds or stride lengths.
Gait pattern-specific algorithms

The current algorithm was developed as a one-size-fits-all, general algorithm. The 
main advantage of this approach is its potential applicability to everyone, irrespective 
of any condition affecting the gait pattern. Most of the general algorithms are based 
on the assumption that a typical cyclical pattern is present in any of the signals. For 
the algorithm developed in this thesis the typical cyclical pattern is assumed in the 



170 171Summary and general discussion

8

decelerating strides in Chapter 3 of this thesis. By excluding these strides, only the 
steady-state portion of gait are used to assess someone’s gait capacity. Including 
only the steady-state portions also facilitates the comparison of results from 
different test settings (e.g. between test sites or over multiple measurements over 
time). This enabled us to combine data from different previous studies to increase the 
study sample size and reuse available gait data in Chapter 5. Regarding the assessment 
of gait to support decision-making for treatment, it might be needed to measure 
people multiple times over time to identify changes in mobility. For example, in 
people with knee osteoarthritis, tracking their walking abilities and limitations over 
time might be helpful in discussing whether or not to consider a surgical intervention. 
This underscores the importance of adequate comparisons between tests.

For analysis of steady-state gait to be feasible in clinical practice, one of the 
considerations is the length of the walking trajectory that can be used for assessment. 
Long walkways allow for more steady-state strides to be analyzed per stretch, but 
the available space is often limited in clinical settings. Chapter 3 revealed that when 
walking back and forth, two strides around each turn should be discarded for the 
analysis of steady-state gait. These discarded strides cover a distance of approximately 
four meters; two meters at each end of the walkway. For the 10 meter walkway used 
in Chapter 3, this left six meters, resulting in an average of five steady-state strides 
per stretch. Previous research in healthy older adults showed that a minimum of  
12 strides during steady-state gait is necessary to assess gait variability [24], while  
15 strides suffice for people with neurological diseases [25]. This implies that on a 
walkway of 10 meters, the minimum number of required strides can be obtained by 
walking the walkway three times back and forth. When reducing the length of the 
walkway even further to only seven meters, walking back and forth five or six times 
should suffice. This method enhances the practicality of gait analysis in clinical 
practice by reducing the space needed while still providing reliable data on 
spatiotemporal gait parameters. This, in contrast to for example, the 30 meter 
walkway required for the traditional 2- and 6-minute walk tests [26,27]. However, a 
study confirming that both the mean and variability of gait characteristics during 
steady-state gait obtained from this shortened walkway and the 30 meter walkway 
are similar, is recommended.

Future applications of IMUs
Monitoring changes in patients’ mobility over time, such as by physiotherapists, and 
potentially at home instead of in a hospital, could improve the screening process and 
treatment plans. For example, in Chapter 5, we found substantial within-group 
heterogeneity while examining the gait characteristics of knee osteoarthritis patients 
with and without an indication for surgical intervention. Although a single measurement  

individuals [9]. This absence in people with a drop foot results in inaccurate or no 
detection of initial foot contact, as noted in Chapter 2 of this thesis. By incorporating 
a pattern recognition step in the algorithm, this deviating signal pattern can be 
distinguished from the typical signal pattern. After recognizing this deviating signal 
pattern, other signal features or peaks in other signals (e.g., vertical acceleration) 
could be used for a more accurate detection in this specific gait pattern. Ideally, the 
pattern recognition step should not require operator input. This can be achieved by 
comparing the signal with an existing set of known gait signals followed by 
appropriate analysis steps to identify gait events and calculate spatial gait 
parameters. Artificial intelligence methods have demonstrated their potential in 
automating this process, enhancing the accuracy and efficiency of gait pattern 
recognition and event detection. 

Artificial intelligence
The application of artificial intelligence is rapidly expanding and becoming increasingly 
accessible in today’s technological landscape [21,22]. Using artificial intelligence  
for example in a pattern recognition step before estimating gait characteristics  
from IMU data might improve the algorithm’s performance. Especially in recognizing 
pathological gait, where IMU data may deviate significantly from the typical signal 
pattern that is seen in normal gait, and adjusting the following step to identify signal 
features is a promising application of artificial intelligence [23]. However, algorithms 
based on artificial intelligence require training with existing data with known gait 
characteristics as an input to achieve a high performance (e.g. supervised learning). 
Given the goal of accurately estimating gait characteristics across a wide range of 
gait patterns, substantial amounts of data are needed to train such algorithms 
effectively. This underscores the importance of data sharing among research groups 
to build robust datasets that encompass diverse gait patterns [22]. The data collected 
in the studies of this thesis are publicly available and contribute to this necessary 
large dataset of variable gait patterns. This collaborative effort facilitates the 
development of more accurate and adaptable algorithms, ultimately advancing the 
field of gait analysis and enhancing patient care.

Steady-state gait
When describing someone’s gait capacity by means and variability of gait character-
istics, we are often interested in the steady-state portion of gait. Walking back and 
forth along a trajectory includes 180-degree turns and acceleration and deceleration 
phases around these turns. Including the strides in these accelerating and decelerating 
periods in the gait analysis can result in lower gait speeds and greater variability than 
someone’s actual comfortable walking speed and variability during steady-state 
gait. Therefore, we identified which strides around turns were accelerating or 
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assessors. The study could include three measurements before an intervention (e.g. 
total knee arthroplasty), with two assessments by the same assessor and one by a 
different assessor to evaluate the test-retest and interrater reliability, respectively. 
Subsequently, post-intervention measurements should be conducted and compared 
to the pre-intervention measurements to assess the responsiveness. Performing 
multiple measurements post-intervention would also allow for monitoring progress 
in rehabilitation. 

Feedback
In addition to gait assessment, IMUs offer the potential to provide real-time feedback 
on gait characteristics during training [10–12]. The possibility to provide feedback on 
gait characteristics based on IMUs could expand training possibilities beyond 
traditional clinical setting and rehabilitation periods [12]. Given the growing pressure 
on healthcare systems due to rising patient numbers, shortage of qualified personnel, 
and escalating healthcare costs [35,36], the prospect of continuing rehabilitation 
exercises at home independently and without direct medical supervision is a 
promising development. Four key requirements for an effective feedback system 
have been mentioned in the literature [37–39]: 
1)	 feedback should be given on a parameter relevant to the patient, 
2)	 the parameter should be measured accurately, 
3)	 the patient should be capable to adjust the parameter (e.g., a casted ankle joint 

cannot be moved regardless of the amount of feedback), and 
4)	 the system should be user-friendly in measuring and providing feedback [37–39]. 

IMUs can be used to assess a wide range of gait characteristics that can be used as a 
feedback parameter [10,11,38,40]. For example, adjusting the foot progression angle 
in people with knee osteoarthritis could decrease knee load [41], while in people with 
stroke, the foot strike angle and propulsion is often an important rehabilitation goal 
[12]. To meet the first two key requirements for a suitable feedback system in people 
with stroke, Chapter 4 of this thesis validated the foot strike angle, demonstrating a 
high level of accuracy with an error of less than 2⁰. In addition, several parameters 
indicative for forward propulsion were explored. Previous research has shown the 
potential of a single pelvis IMU to estimate the 3D components of the ground reaction 
force during overground gait, indicating that the forward propulsion could be 
determined [42]. However, the relatively complex calibration procedures required for 
this approach hinder its usability for patients. Unfortunately, none of the explored 
IMU-foot based gait characteristics in Chapter 4 showed a strong correlation with 
forward propulsion. Therefore, future research should investigate more sophisticated 
approaches to measure the forward propulsion with IMUs while prioritizing ease of 
use for patients.

did not clearly distinguish between these groups based on gait characteristics, 
I expect that an individualized approach with multiple follow-up measurements over 
time could be more effective in identifying when a patient is a suitable candidate for 
surgical intervention. To this end, a study monitoring the mobility of patients with 
osteoarthritis could provide a better understanding of the progression of mobility 
problems. Integrating pain scores and comorbidities in this monitoring could further 
enhance the insights gained.

Conducting measurements in ecologically valid settings offers valuable insights into 
individuals’ actual behavior in their own environments (performance) compared to 
their abilities under optimal conditions in a clinical setting (capacity). Capturing 
real-world walking metrics requires further development and research on the 
performance of algorithms [28]. Given that people do various activities beyond 
walking, such as cycling and driving, future research should focus on accurately 
distinguishing between walking and other activities. While previous research found 
promising results in identifying walking versus “non walking” activities [28,29], it 
remains unclear which specific non-walking activities participants performed in 
these studies and how these activities affect the identification of walking periods. 
For example, identifying walking is easier if participants were only walking or sitting 
during the measurements compared to participants who were walking, cycling, and 
driving a mobility scooter. Moreover, considering the diversity of walking surfaces in 
real-world settings (e.g. carpet vs. pavement, flat vs incline), studying the effect of 
these surfaces on the estimated gait characteristics would provide valuable insights. 
Once walking periods are accurately identified, the current algorithm should be able 
to extract gait characteristics from real-world data effectively.

Gait analysis using IMUs holds promise not only for clinical practice but also to 
evaluate new interventions aimed at enhancing gait capacity and performance. This 
is particularly important because research has shown that patient-reported outcome 
measures (PROMS) exhibit a stronger correlation with pain and satisfaction 
compared to physical function in patients undergoing total knee arthroplasty [30,31]. 
Furthermore, while PROMS tend to reach a ceiling effect just three months after 
surgery [32], objectively measured gait characteristics begin to show improvement 
during this period [33,34]. Therefore, IMU-based gait analysis seems to offer additional 
informative value over PROMS for evaluating rehabilitation programs. In addition, 
IMUs could offer an objective evaluation of the effectiveness of different gait 
rehabilitation programs, such as those for stroke patients. However, before the 
algorithm developed in this thesis can be used for this purpose, further research on 
the test-retest reliability, responsiveness, and interrater reliability is necessary. To 
achieve this, a study could be designed with multiple measurements and multiple 
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objectively measuring gait characteristics could be a factor to be considered in the 
shared decision making process. 

When provided with feedback on their measured foot strike angle and forward 
propulsion, people with stroke were able to significantly improve these gait charac-
teristics. Furthermore, the D-SUS indicated that participants found the feedback to 
be a usable training tool to improve certain gait characteristics. Nonetheless, there 
are still some hurdles to overcome for the implementation of an IMU-based feedback 
solution, such as identifying the most suitable feedback modality and determining 
the appropriate timing for feedback delivery.

Chapter 7 of this thesis aimed to investigate the third and fourth key requirements of  
a suitable feedback system. While almost all participants with stroke were able to 
adjust their gait pattern based on visual feedback on the foot strike angle, the ability 
to increase their forward propulsion varied significantly among participants. The 
study in Chapter 7 was essential to identify the capabilities of chronic stroke patients 
to adjust relevant gait characteristics based on feedback and to explore their 
openness to use IMUs for training purposes. However, the feedback provided was still 
based on optical marker data and force plates. A crucial next step in the development 
of an IMU-based feedback system is to conduct a study on the ability to provide 
real-time feedback based on IMU data. This approach has been demonstrated in 
studies on the foot progression angle and postural balance in elderly [40], highlighting 
the potential for IMUs to deliver effective real-time feedback.

Regarding the fourth requirement, the user friendliness, Chapter 7 indicated that 
people with stroke were open to use an IMU-based feedback system for training 
purposes. In addition, other studies also expressed cautious optimism about 
IMU-based gait training and feedback systems [12,37]. However, limited research has 
been performed on how patients prefer to train in their own environment, the type of 
feedback (e.g. visual, auditory, haptic) that would be suitable for that context, and 
how patients perceive the interaction with the hardware and software of IMU-based 
feedback training without any human supervision [12,39,43]. Future research should 
also focus on the timing of feedback, such as whether it should be provided at initial 
contact or during the following foot flat phase. Furthermore, exploring the amount 
and type of feedback participants prefer to receive is crucial. This includes determining 
whether users prefer both positive and negative feedback or only feedback on steps 
with a gait pattern that could be improved.

General conclusions
The studies in this thesis led to a publicly available algorithm that can be used to 
derive spatiotemporal gait characteristics and the foot strike angle, using IMUs on 
the feet and trunk in people with and without gait impairments. The algorithm 
demonstrated excellent accuracy when group data were collected during 
steady-state walking in standardized settings. However, improvements are needed 
for estimating spatial gait characteristics at higher gait speeds and temporal gait 
characteristics for people with irregular gait patterns. 

When comparing groups with- and without an indication for surgical treatment for 
osteoarthritis, only limited differences between the groups, and large heterogeneity 
within both groups, were found on mobility characteristics. These results underscore 
that the decision for surgical treatment is based on multiple factors, but that 
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Lopen is een essentiële activiteit die een onmiskenbare rol speelt in ons dagelijks 
leven. Wanneer iemands loopvaardigheid beperkt is, heeft dit een significante impact 
op hun functioneren en welzijn. Het is dan ook van groot belang om de loopvaardig-
heid nauwkeurig in kaart te brengen. Dit vormt de basis voor het opstellen van een 
passend behandelplan en het evalueren van de effectiviteit van de behandeling.  
Dit proefschrift richtte zich op het ontwikkelen en evalueren van algoritmes, die met 
behulp van draagbare bewegingssensoren, de loopvaardigheid van mensen met 
loopaandoeningen objectief kunnen meten. Daarnaast onderzocht ik of het mogelijk 
is om mensen met een beroerte het looppatroon aan te laten aanpassen, door hen 
real-time feedback te geven op basis van bewegingssensoren. 

In hoofdstuk 1 geef ik de relevante achtergrond informatie voor dit proefschrift. 
Ik bespreek in dit hoofdstuk onder andere wat we aan het looppatroon kunnen meten 
en hoe we dit kunnen doen. Zo kan je het lopen beschrijven in temporele- en spatiele 
maten (bijvoorbeeld de stapduur en stapgrootte) en met behulp van kinematica  
en kinetica (bijvoorbeeld de enkelhoek en afzetkracht). In de manier waarop we  
het lopen kunnen meten speelt technologie een steeds belangrijkere rol, waarbij er 
steeds meer interesse is voor het gebruik van draagbare sensoren.

Op basis van algoritmes uit de wetenschappelijke literatuur, heb ik een algoritme 
ontwikkeld om temporele en spatiele loopparameters te bepalen met behulp van 
bewegingssensoren. In hoofdstuk 2 valideerde ik dit algoritme in gezonde deelnemers  
en mensen in de chronische fase na een beroerte, terwijl zij op een geïnstrumenteerde 
loopband liepen met regelmatige of onregelmatige stappen. De temporele en spatiele 
loopparameters die bepaald werden door het algoritme voor de bewegingssensoren 
werden vergeleken met de gouden standaard voor bewegingsanalyse (optical motion 
capture). Het algoritme voor bewegingssensoren resulteerde in vergelijkbare of 
betere waarden in temporele en spatiele loopparameters tijdens het lopen met 
onregelmatige stappen dan met de regelmatige stappen. Hoewel de nauwkeurigheid 
van de temporele en spatiele loopparameters op groepsniveau goed was, zowel  
bij gezonde personen als bij mensen met een beroerte, werden de spatiele loop
parameters vaak onderschat bij hogere loopsnelheden. Deze onderschatting was 
met name aanwezig in de groep gezonde deelnemers, omdat zij sneller liepen (tot 
1.65 m/s) dan de deelnemers met een beroerte (tot 1.2 m/s).

Gezien de beperkte ruimte waarin looptesten soms worden afgenomen, lopen 
mensen vaak over een korte afstand waarbij ze zich op beide uiteinden omdraaien 
om het traject meerdere keren op en neer te lopen. In hoofdstuk 3 heb ik onderzocht 
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zonder indicatie voor een knieprothese. Geen van de andere parameters vertoonde 
verschillen tussen deze groepen, mede door de heterogeniteit in beide groepen.

Het is cruciaal om de bruikbaarheid van het loopanalyse- en feedbacksysteem op 
basis van sensoren te testen, aangezien een goede bruikbaarheid de kans vergroot 
dat het systeem daadwerkelijk wordt gebruikt door de beoogde gebruiker. Daarom is 
het belangrijk om waardevolle informatie over de bruikbaarheid van het systeem al 
in een vroeg stadium te verkrijgen voor de verdere ontwikkeling van het systeem.  
De internationale standaard voor het beoordelen van de bruikbaarheid van een 
systeem is de System Usability Scale (SUS). In hoofdstuk 6 is de SUS vertaald naar het 
Nederlands (D-SUS), omdat een vragenlijst in de moedertaal veel voordelen heeft. 
Bovendien werd in hoofdstuk 6 de toepasbaarheid van de D-SUS op medische 
technologieën gevalideerd. De Nederlandse versie van de SUS kan op groepsniveau 
worden gebruikt, maar enige voorzichtigheid is geboden bij de interpretatie van 
individuele scores. Op basis van de bevindingen kon worden geconcludeerd dat de 
D-SUS geschikt is om snel en gemakkelijk de bruikbaarheid van loopanalyse- en 
feedbacksysteem te testen onder Nederlandstalige deelnemers.

In hoofdstuk 7 werd het effect van real-time feedback op de voethoek en voorwaartse 
propulsie bij mensen na een beroerte onderzocht. De feedback over de voethoek 
stimuleerde mensen om hun voethoek gemiddeld met 7.5±1.4 graden te verbeteren. 
Deelnemers waren echter minder consistent in het verbeteren van de voorwaartse 
propulsie op basis van feedback. Terwijl sommige deelnemers erin slaagden de 
voorwaartse propulsie met een derde te verhogen, lieten anderen nauwelijks 
verbetering zien. Bovendien reageerden de deelnemers positief op de bruikbaarheid 
van het feedbacksysteem en waren ze bereid om het lopen verder te trainen met 
behulp van deze technologie.

De gezamenlijke resultaten van dit proefschrift heb ik besproken in hoofdstuk 8. In dit 
hoofdstuk worden de gemaakte keuzes en hun gevolgen binnen het ontwikkelde 
algoritme voor sensoren besproken. Daarnaast worden mogelijke richtingen voor 
vervolg toepassingen voor het meten van lopen met sensoren gegeven. Tot slot worden  
de overwegingen besproken die nog moeten worden onderzocht met betrekking  
tot een feedback systeem met sensoren ter verbetering van de loopvaardigheid.

hoe versnellende en vertragende stappen rondom een draai van invloed zijn op het 
gemiddelde en de variabiliteit van temporele en spatiele loopparameters. Door deze 
stappen niet mee te nemen in de analyse, kan het comfortabele looppatroon 
nauwkeuriger worden beschreven. Hoewel versnellende en vertragende stappen 
maar een klein effect hadden op het gemiddelde van de temporele en spatiele 
loopparameters, verdubbelde de variabiliteit van deze parameters wanneer deze 
stappen werden meegenomen. Een verdiepende analyse van de stappen rondom de 
draai toonde aan dat de eerste en laatste twee stappen significant verschilden van de 
stappen tijdens het comfortabele lopen. Daarom wordt geadviseerd om de twee 
stappen voor en na een draai uit te sluiten wanneer men het comfortabele 
looppatroon wil beschrijven. Door deze selectie toe te passen, kunnen looptesten 
voor het bepalen van temporele en spatiele loopparameters tijdens comfortabel 
lopen worden uitgevoerd op locaties waar alleen een beperkte loopafstand 
beschikbaar is. 

In hoofdstuk 4 is het algoritme voor bewegingssensoren van hoofdstuk 2 uitgebreid 
om twee relevante loopparameters te meten die beperkt kunnen zijn bij mensen na 
een beroerte. De eerste parameter is de voethoek, gedefinieerd als de hoek die de 
voet met de grond maakt bij het neerzetten. Deze parameter is met name relevant 
voor patiënten met een afhangende voet (�dropfoot�). De tweede parameter is de 
voorwaartse propulsie, gedefinieerd als de voorwaartse kracht tijdens de afzet, die 
relevant is voor mensen die moeite hebben met het genereren van voorwaartse 
kracht. Hoewel de oriëntatie van een bewegingssensor gebruikt kan worden om de 
voethoek te meten, is dit type sensor niet in staat om kracht te meten. Daarom zijn 
acht verschillende parameters geëvalueerd als indicatoren voor de voorwaartse 
propulsie: schredelengte, maximale hoeksnelheid en hoekversnelling tijdens de 
stand fase van zowel de voet als het onderbeen, de maximale lineaire versnelling van 
het onderbeen, en de hoek van de voet en het onderbeen bij eind-contact. Hoewel de 
voethoek nauwkeurig kon worden beoordeeld door de bewegingssensor (1.4±2.3 
graden), was geen van de onderzochte parameters indicatief voor de voorwaartse 
propulsie, wat suggereert dat een meer geavanceerde benadering hiervoor nodig is.

In hoofdstuk 5 werden verschillen in loop-, draai- en zit-tot-sta-parameters onder- 
zocht tussen mensen met knieartrose die wel en geen kandidaat waren voor een 
knieprothese. Het algoritme voor bewegingssensoren (hoofdstuk 2) werd gebruikt 
om looptijd, schredetijd en staptijd te verkrijgen uit het comfortabele gedeelte van 
het lopen (hoofdstuk 3). Daarnaast hebben we de rompbewegingen tijdens het lopen 
bepaald en gekeken naar de mate waarin men tijdens de zit-tot-sta beweging 
voorover leunt. De groep mensen die kandidaat waren voor een knieprothese hadden 
een kleine, maar significant, lagere loopsnelheid in vergelijking met de groep mensen 
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Wauw, daar ligt echt een heel boekje, en mijn naam staat op de kaft. Hoewel ik er 
rete-trots op ben dat ie nu af is, voelt het toch een beetje raar dat mijn naam daar zo 
alleen op de voorkant staat. Onderzoek, en zeker een heel promotietraject, doe je 
namelijk helemaal niet alleen. Ik ben dan ook blij dat ik in dit hoofdstuk de ruimte heb 
om een paar mensen in het zonnetje te zetten en te bedanken voor hun aandeel aan 
dit proefschrift en mijn promotie.

Op de eerste plaats mijn kleine -maar grootse- promotieteam: Noël en Katrijn!  
Mijn promotietraject ging niet helemaal ‘volgens het boekje’, maar met jullie fijne 
begeleiding is er wel een heel mooi boekje uit voort gekomen. Noël, ik kan je pragmatische 
instelling en onophoudelijke nieuwsgierigheid enorm waarderen. Bij het eerste 
onderzoek dat we samen deden wilde ik het liefst eerst alle theorie die er te vinden 
was uitgezocht hebben, jij zei: ‘ga maar gewoon een pilot testje doen’. Volgens mij 
keek ik je een beetje vreemd aan, maar een half uur testen leerde me meer dan een 
hele dag lezen. Daarnaast leerde je mij dat ik van een onderzoek mag verwachten dat 
ik er een antwoord op mijn vraag mee vindt, maar dat het nog vaker tot veel meer 
nieuwe vragen leidt. Inmiddels schijnt het traditie te worden dat jouw promovendi 
iets over jouw gevoel voor humor te zeggen in hun dankwoord, dan kan ik natuurlijk 
niet achter blijven: ik heb me er prima mee vermaakt de afgelopen jaren! Katrijn,  
bij het schrijven van mijn algemene discussie vroeg je me gekscherend ‘Wat heb ik  
je nou geleerd?!’, toen de kapstok per ongeluk al weer twee kantjes lang was 
geworden… Oeps. Maar, ik heb enorm veel van je geleerd; van je kritische houding  
als het gaat om het neerzetten van een goede onderzoeksvraag en of dat wat je in  
dat onderzoek doet die vraag wel echt gaat beantwoorden, maar ook om altijd zo 
naar andere onderzoeken te blijven kijken. Hoewel de afgelopen jaren mijn vermoeden 
bevestigd hebben dat wetenschappelijk schrijven niet mijn grootste talent en hobby is, 
heb ik gelukkig ook van je geleerd korte kapstokken te maken, waardoor dat schrijven 
toch steeds net een beetje makkelijker werd. Ik startte bij de Maartenskliniek met de 
instelling dat ik nog niet wist of ik wel wilde promoveren, ik wilde vooral werken aan 
coole dingen die mensen zouden helpen en ik wilde ontdekken of onderzoek doen  
wel bij mij past. Bedankt dat jullie mij de vrijheid lieten om aan verschillende gave 
projecten te werken, jullie betrokkenheid, en alles wat jullie mij geleerd hebben de 
afgelopen jaren. Ik wacht echter wel nog steeds op een cursus Segway-rijden, 
de leverdatum van die dingen komt (gepaard met de nieuwbouw) inmiddels steeds 
dichterbij toch?

Brenda, je was al betrokken sinds mijn sollicitatie bij de Maartenskliniek omdat het 
idee was dat ik van alles in het MOTION project zou gaan doen. Aangezien het maken 
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van het kinderformaat exoskelet enige vertraging heeft opgelopen is het mij, buiten 
het vertalen van de SUS, nooit helemaal gelukt om toffe onderzoeken binnen dit 
project te doen. Toch wil ik je hier wel even speciaal noemen, jouw betrokkenheid en 
interesse is bewonderingswaardig. Regelmatig hoorde ik je weer over de gang rennen 
want ‘sjips ik moet opschieten, ben al laat’, maar vervolgens vond je ook altijd tijd om 
via de waterkoker met een kop thee in de hand even te vragen hoe het weekend was. 
Bedankt voor de fijne samenwerking, zowel voor een fraai hoofdstuk in dit boekje als 
ook daarnaast. Er komt geen ‘buurvrouw Gerda’ stukje meer uit mijn pen of 
toetsenbord zonder dat ik ook even aan jou denk.

Jolien, zonder jou hadden de eerste studies in mijn boekje er waarschijnlijk heel 
anders uit gezien. Bedankt voor al je harde werk, geduld, enthousiasme en spontane 
bijklets-koffietjes met een stukje chocolade tussendoor. Cheriel, bedankt voor alle 
gezellige uurtjes in het lab, alles wat je me geleerd hebt over het begeleiden van 
studenten, en al je vragen bij de �moeilijke technische dingen�. Samen met de passie 
en het enthousiasme van Theo en René heb ik enorm genoten van alles wat we in het 
Movin(g) Reality project hebben gedaan. Bart, bedankt voor al je GRAIL-hulp, met 
name de feedback applicatie die je hebt gemaakt was geweldig. Frank, spontaan 
hebben we nog een leuk stuk samen gemaakt dat een mooie plek in mijn boekje heeft 
gekregen. Bedankt, ik ben blij dat jij het meeste schrijfwerk hebt gedaan en je mij 
lekker met de analyse scrips liet prutsen. Lise, ons TrunkyXL project is helaas niet 
terug te vinden in dit boekje, maar bedankt voor alle gezellige uurtjes in het lab! Ik 
vraag me nog steeds af of we meer pilot- en testtijd of daadwerkelijke meeturen 
hebben gemaakt, maar het maakt me eigenlijk niet uit, ik heb er enorm van genoten. 
Vraag me alleen niet meer voor de camera, vloggen blijkt echt meer jouw ding dan het 
mijne. Ieder van jullie heeft mij op zijn eigen manier geïnspireerd om van deze 
projecten een succes te maken. Ik prijs me gelukkig met de samenwerking die ik met 
jullie allemaal heb gehad, dank jullie wel!

Hard werken gaat het beste in een fijne werksfeer. Hiervoor wil ik in het bijzonder 
mijn kamergenootjes van de afgelopen jaren bedanken, aangezien ik nogal eens van 
kamer gewisseld ben, zijn er dat er veel, maar jullie mogen je hier allemaal 
aangesproken voelen. Naast hard werken was er ook altijd tijd voor samen lachen, 
samen klagen, samen successen vieren, en samen tiny habits uitvoeren. Collega’s van 
de reva-research en later het team motorisch functioneren, jullie zijn niet alleen 
toppers bij research content meetings en journal clubs, maar ook de beste in ver-
kleedpartijtjes, Jos-borrels en afsluitende patattafels. Collega’s van de afdeling 
research en het LEC, fijn dat jullie altijd klaar staan om mee te denken, de leuke sfeer 
op de afdeling, het onderzoek weer even in perspectief van de praktijk plaatsen, en 
jullie hulp met het werven van studiedeelnemers. Bedankt voor de fijne tijd allemaal.

Wat alle onderzoeken in dit boekje ook gemeen hebben, is dat zich voor elk van de 
studies er in razend tempo deelnemers hadden aangemeld. Zelfs in coronatijd. Lieve 
deelnemers, bedankt voor alles. Bedankt voor jullie inzet en hulp om deze onderzoeken 
tot een goed einde te brengen, het delen van jullie verhalen, inzichten, relativerings-
vermogen, positiviteit en geduld. Bedankt dat jullie mij niet alleen als onderzoeker, 
maar ook als mens lieten groeien. Zonder jullie was dit allemaal niet gelukt!

Als laatste wil ik mijn privé-team achter dit succes ook even in het zonnetje zetten. 
Lieve vrienden en familie, en in het bijzonder lieve pap, mam, Coen en Laura, soms 
was het lastig uitleggen waar ik nou mee bezig was de afgelopen jaren. Ik hoop dat 
vandaag het allemaal een beetje duidelijker heeft gemaakt. Bedankt voor alles: voor 
de feedback op mijn sollicitatiebrief voor deze werkplek, jullie vertrouwen dat ik het 
tot een goed einde zou schoppen, elke keer weer jullie oprechte interesse -ook als ik 
het niet goed uit kon leggen-, de keren dat ik weer eens laat thuis was en mijn benen 
onder de tafel kon steken, en de keren dat de NS mij niet meer thuis bracht en jullie me 
weer ergens op hebben gehaald. Coen en Laura, fijn dat jullie vandaag bij de 
verdediging het extra steuntje in mijn rug zijn als mijn “nimfjes”, ik ben super trots om 
samen met jullie hier te mogen staan. Werken en het doen van onderzoek is leuk, 
maar tijd om te ontspannen, te relativeren en even te resetten vind ik minstens zo 
belangrijk. Gelukkig heb ik hele fijne mensen om me heen om dit samen mee te doen 
door te meppen tegen squashballetjes, het maken van fietstochtjes, hardlooprond-
jes, en wandelingen -soms met hond of gepaard met zoektocht naar kabouters-, de 
bezoekjes aan de Efteling, fanatiek gespeelde spelletjes, en alles daar tussenin. 
Bedankt lieve vrienden en familie, jullie zijn goud waard!
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Technical Medicine at the University of Twente in 2012. In 2016, she obtained her 
bachelor degree and started the master Human Movement Sciences at the University  
of Maastricht in the same year. During her masters she became interested in the  
field of rehabilitation. Carmen performed her graduation internship at Adelante 
Zorggroep, where she investigated the effect of task oriented strength training on 
the arm and hand function in children with cerebral palsy. After her graduation in 
2017, Carmen performed an additional internship at the Roessingh Research and 
Development on the effect of a soft robotic glove on the hand function of people with 
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Research data management

This research followed the applicable laws and ethical guidelines. Research Data 
Management was conducted according to the FAIR principles. The paragraphs below 
specify how this was achieved.

Ethics and privacy
This thesis is based on the results of human studies, which were conducted in 
accordance with the principles of the Declaration of Helsinki. All studies met the 
requirements for exemption from the medical ethics committee reviewed by the 
medical ethics committee on Research Involving Human Subjects region Arnhem-Ni-
jmegen (chapter 2 - dossier number: 2021-8191, chapters 4 and 7 - dossier number: 
2021-13295, and chapter 6 - dossier number: 2020-6848), or the institutional board of 
the Sint Maartenskliniek (chapters 3 and 5 - dossier number: RJK/we). Written 
informed consent was given by all participants for the collection, processing, and 
sharing of their data for future research. The privacy of the participants was 
warranted by the use of pseudonymization.

Funding
The studies described in chapters 2, 3, and 5 are part of the MOTOR project, which is 
co-funded by Stichting ReumaNederland, Smith and Nephew and the PPP Allowance 
made available by Health Holland, Top Sector Life Sciences & Health. The studies 
described in chapters 4, and 7 are funded by Interreg North-West Europe as part of 
the VR4REHAB open innovation network and ZonMw as part of the Topspecialis-
tische Zorg & Onderzoek (10070022010004). The study described in chapter 6 is part 
of the MOTION project, which is funded by Interreg - 2SeasMersZeeën.

Data collection and storage
Data for chapters 2, 4, and 7 were collected through Vicon (Vicon Motion Systems 
Ltd., Oxford, UK) and MTManager (Movella, Enschede, The Netherland), then 
transferred to Spyder (Spyder IDE, available from: https://www.spyder-ide.org), and 
subsequently to RStudio (RStudio, Boston, USA). Data for chapters 3 and 5 were 
collected through MTManager and transferred to Spyder. For chapter 5 this data was 
subsequently transferred to RStudio. Data for chapter 6 was collected through 
electronic Case Report Forms (eCRF) using Castor EDC (Castor, Amsterdam, The 
Netherlands) and transferred to Spyder.

Pseudonymized data were stored and analyzed on the department server, accessible 
only to project members working at the Sint Maartenskliniek. These secure storage 
options ensure the availability, integrity and confidentiality of the data. Paper 
(hardcopy) data are stored in file cabinets within the department.
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Data sharing
The datasets of chapters 2, 4, and 7 are suitable for reuse, and published along with 
their respective research articles (DOI chapter 2: https://doi.org/10.5281/zenodo.8198714, 
DOI chapter 4 and 7: https://dx.doi.org/10.21227/dn2j-5e57). Data were made reusable 
by adding sufficient documentation and by using the preferred and sustainable data 
formats. All data used for these chapters including all analysis scripts are also publicly 
available at the GitHub page of the Sint Maartenskliniek (https://github.com/Sint-
Maartenskliniek). The metadata of the dataset used in chapters 3 and 5 is published  
at Open Science Framework (https://osf.io/fdvr5). Requests for access of this data  
will be checked by a data access committee formed by the department. The data of 
chapter 6 are not suitable for reuse and will be archived for at least 15 years after 
termination of the study.
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Donders Graduate School for Cognitive Neuroscience

For a successful research Institute, it is vital to train the next generation of young 
scientists. To achieve this goal, the Donders Institute for Brain, Cognition and Behavior 
established the Donders Graduate School for Cognitive Neuroscience (DGCN), which 
was officially recognized as a national graduate school in 2009. The Graduate School 
covers training at both Master’s and PhD level and provides an excellent educational 
context fully aligned with the research program of the Donders Institute. 

The school successfully attracts highly talented national and international students 
in biology, physics, psycholinguistics, psychology, behavioral science, medicine and 
related disciplines. Selective admission and assessment centers guarantee the 
enrolment of the best and most motivated students.

DGCN tracks the career of PhD graduates carefully. More than 50% of PhD alumni 
show a continuation in academia with postdoc positions at top institutes worldwide, 
e.g. Stanford University, University of Oxford, University of Cambridge, UCL London, 
MPI Leipzig, Hanyang University in South Korea, NTNU Norway, University of Illinois, 
North Western University, Northeastern University in Boston, ETH Zürich, University 
of Vienna etc.. Positions outside academia spread among the following sectors: 
specialists in a medical environment, mainly in genetics, geriatrics, psychiatry and 
neurology. Specialists in a psychological environment, e.g. as specialist in neuro
psychology, psychological diagnostics or therapy. Positions in higher education as 
coordinators or lecturers. A smaller percentage enters business as research consultants, 
analysts or head of research and development. Fewer graduates stay in a research 
environment as lab coordinators, technical support or policy advisors. Upcoming 
possibilities are positions in the IT sector and management position in pharmaceutical 
industry. In general, the PhDs graduates almost invariably continue with high-quality 
positions that play an important role in our knowledge economy. 

More information on the DGCN as well as past and upcoming defenses please visit: 
http://www.ru.nl/donders/graduate-school/phd/



Theses Sint Maartenskliniek



218 219Theses Sint Maartenskliniek

Theses Sint Maartenskliniek

Boekesteijn, R. (2024) Evaluating walking in lower-extremity osteoarthritis: Beyond the lab, towards the  
real world. 

Den Broeder, N. (2024) More than tapering, less than full dose - Efficient use of biologics in the treatment of 
rheumatoid arthritis. Radboud University Nijmegen, Nijmegen. The Netherlands.

Kuijpers, R. (2024) Adapt your step: Clinical assessment and training of walking adaptability in children with 
mild motor disorders. Radboud University Nijmegen, Nijmegen. The Netherlands. 

Te Molder, M. (2024) The unhappy patient after TKA. A paradigm shift in assessing outcome. Radboud 
University Nijmegen, Nijmegen. The Netherlands. 

Van Hal, T. (2024) A rheumatologist undercover: research of psoriatic arthritis at the dermatology clinic. 
Radboud University Nijmegen, Nijmegen. The Netherlands.

Veenstra, F. (2024). About gout. Studying potential targets for improvement of care. Radboud University 
Nijmegen, Nijmegen. The Netherlands. 

De Jong, L.A.F. (2023). Effects of lower limb orthotic devices in people with neurological disorders. Radboud 
University Nijmegen, Nijmegen. The Netherlands.

Michielsens, C. (2023). Tapering strategies of biologics in inflammatory disorders. Radboud University 
Nijmegen, Nijmegen. The Netherlands.

Pouls, B. (2023). Supporting patients’medication management using eHealth. Test cases in rheumatology. 
Radboud University Nijmegen, Nijmegen. The Netherlands.

Stöcker, J. (2023). Accessible and effective non-pharmacological care for persons with systemic sclerosis. 
Radboud University Nijmegen, Nijmegen. The Netherlands.

Huiskes, V. (2022). The synergistic role of patients and healthcare providers in reducing drug-related 
problems. Radboud University Nijmegen, Nijmegen. The Netherlands.

Marsman, D. (2022). Polymyalgia rheumatica. Clinical characteristics and new treatment opportunities. 
Radboud University Nijmegen, Nijmegen. The Netherlands.

Mulder, M. (2022). Going off-road. Exploring and mapping psoriatic arthritis. Radboud University Nijmegen, 
Nijmegen. The Netherlands.

Alingh, J. (2021). Effect of robotic gait training on the post-stroke gait pattern. Evaluation of LOPES II. Radboud 
University Nijmegen, Nijmegen. The Netherlands. 

Van Dijsseldonk, R. (2021). Step into the future: mobility after spinal cord injury. Radboud University Nijmegen, 
Nijmegen. The Netherlands.

Pelle, T. (2021). Beating osteoarthritis by e-self management in knee or hip osteoarthritis. Radboud University 
Nijmegen, Nijmegen. The Netherlands.

Van Heuckelum, M (2020). Novel approaches to improve medication adherence in rheumatoid arthritis. 
Radboud University Nijmegen, Nijmegen. The Netherlands.

Mathijssen, E. (2020). The voice of patients with rheumatoid arthritis. Radboud University Nijmegen, 
Nijmegen. The Netherlands.

Bakker, S. (2019). Regional anesthesia and total knee arthroplasty. Anesthetic and pharmacological 
considerations. Radboud University Nijmegen, Nijmegen. The Netherlands.

Claassen, A. (2019). Strategies for patient education in rheumatic diseases. Radboud University Nijmegen, 
Nijmegen. The Netherlands. 

Fenten, M. (2019). Optimizing locoregional anesthesia in fast track orthopaedic surgery. Radboud University 
Nijmegen, Nijmegen. The Netherlands.

Minten, M. (2019). On the role of inflammation and the value of low dose radiation therapy in osteoarthritis. 
Radboud University Nijmegen, Nijmegen. The Netherlands. 

Verhoef, L. (2019). Effective and efficient use of bDMARDs in rheumatoid arthritis. Radboud University 
Nijmegen, Nijmegen. The Netherlands.

Bekker, C. (2018). Sustainable use of medication. Medication waste and feasibility of redispensing, Utrecht 
University, Utrecht. The Netherlands. 



220 221Theses Sint Maartenskliniek

Brinkman, M. (2013). Fixation stability and new surgical concepts of osteotomies around the knee. Utrecht 
University, Utrecht, The Netherlands.

Kwakkenbos, L. (2013). Psychological well-being in systemic sclerosis: Moving forward in assessment and 
treatment. Radboud University, Nijmegen, The Netherlands.

Severens, M. (2013). Towards clinical BCI applications: assistive technology and gait rehabilitation. Radboud 
University, Nijmegen, The Netherlands.

Stukstette, M. (2013). Understanding and treating hand osteoarthritis: a challenge. Utrecht University, 
Utrecht, The Netherlands.

Van der Maas, A. (2013). Dose reduction of TNF blockers in Rheumatoid Arthritis: clinical and pharmacological 
aspects. Radboud University, Nijmegen, The Netherlands.

Zedlitz, A. (2013). Brittle brain power. Post-stroke fatigue, explorations into assessment and treatment. 
Radboud University, Nijmegen, The Netherlands.

Beijer, L. (2012). E-learning based speech therapy (EST). Exploring the potentials of E-health for dysarthric 
speakers. Radboud University, Nijmegen, The Netherlands.

Hoogeboom, T. (2012). Tailoring conservative care in osteoarthritis. Maastricht University, Maastricht, The 
Netherlands.

Boelen, D. (2011). Order out of chaos? Assessment and treatment of executive disorders in brain-injured 
patients. Radboud University, Nijmegen, The Netherlands.

Heesterbeek, P. (2011). Mind the gaps! Clinical and technical aspects of PCL-retaining total knee replacement 
with the balanced gap technique. Radboud University, Nijmegen, The Netherlands.

Hegeman, J. (2011). Fall risk and medication. New methods for the assessment of risk factors in commonly 
used medicines. Radboud University, Nijmegen, The Netherlands.

Smulders, E. (2011). Falls in rheumatic diseases. Risk factors and preventive strategies in osteoporosis and 
rheumatoid arthritis. Radboud University, Nijmegen, The Netherlands.

Snijders, G. (2011). Improving conservative treatment of knee and hip osteoarthritis. Radboud University, 
Nijmegen, The Netherlands.

Vriezekolk, J. (2011). Targeting distress in rheumatic diseases. Utrecht University, Utrecht, The Netherlands.
Willems, P. (2011). Decision making in surgical treatment of chronic low back pain. The performance of 

prognostic tests to select patients for lumbar spinal fusion. Maastricht University, Maastricht, The 
Netherlands.

Aarts, P. (2010). Modified constraint-induced movement therapy for children with unilateral spastic cerebral 
palsy: the Pirate group intervention. Radboud University, Nijmegen, The Netherlands.

Groen, B. (2010). Martial arts techniques to reduce fall severity. Radboud University, Nijmegen, The 
Netherlands.

Van Koulil, S. (2010). Tailored cognitive behavioral therapy in fibromyalgia. Radboud University, Nijmegen, 
The Netherlands.

Van den Bemt, B. (2009). Optimizing pharmacotherapy in patients with rheumatoid arthritis: an 
individualized approach. Radboud University, Nijmegen, The Netherlands.

Van Nes, I. (2009). Balance recovery after supratentorial stroke. Influence of hemineglect and the effects of 
somatosensory stimulation. Radboud University, Nijmegen, The Netherlands.

Ruiter, M. (2008). Speaking in ellipses. The effect of a compensatory style of speech on functional 
communication in chronic agrammatism. Radboud University, Nijmegen, The Netherlands.

Baken, B. (2007). Reflexion on reflexes. Modulation during gait. Radboud University, Nijmegen, The Netherlands.
Gaasbeek, R. (2007). High tibial osteotomy. Treatment of varus osteoarthritis of the knee. Radboud University, 

Nijmegen, The Netherlands.
Koëter, S. (2007). Patellar instability. Diagnosis and treatment. Radboud University, Nijmegen, The 

Netherlands.
Langeloo, D. (2007). Monitoring the spinal cord during corrective spinal surgery: a clinical study of TES-MEP. 

Radboud University, Nijmegen, The Netherlands.
De Haart, M. (2005). Recovery of standing balance in patients with a supratentorial stroke. Radboud 

University, Nijmegen, The Netherlands.

Bikker, I.(2018). Organizing timely treatment in multi-disciplinary care. University of Twente, The Netherlands.
Bouman, C. (2018). Dose optimisation of biologic DMARDs in rheumatoid arthritis: long-term effects and 

possible predictors. Radboud University Nijmegen, The Netherlands. 
Mahler, E. (2018). Contributors to the management of osteoarthritis. Utrecht University, The Netherlands. 
Tweehuysen, L. (2018). Optimising biological treatment in inflammatory rheumatic diseases.
Predicting, tapering and transitioning. Radboud University Nijmegen, Nijmegen, The Netherlands.
Geerdink, Y. (2017). Getting a grip on hand use in unilateral cerebral palsy. Radboud University, Nijmegen,  

The Netherlands. 
Remijn, L. (2017). Mastication in children with cerebral palsy. Radboud University, Nijmegen, The Netherlands. 
Selten, E. (2017). Beliefs underlying treatment choices in osteoarthritis. Radboud University, Nijmegen, 

The Netherlands.
Van Hooff, M. (2017). Towards a paradigm shift in chronic low back pain? Identification of patient profiles to 

guide treatment. VU University Amsterdam, Amsterdam, The Netherlands. 
Lesuis, N. (2016). Quality of care in rheumatology. Translating evidence into practice. Radboud University, 

Nijmegen, The Netherlands.
Luites, J. (2016). Innovations in femoral tunnel positioning for anatomical ACL reconstruction. Radboud 

University, Nijmegen, The Netherlands.
Pakvis, D. (2016). Survival, primary stability and bone remodeling assessment of cementless sockets. 

An appraisal of Wolff’s law in the acetabulum. Radboud University, Nijmegen, The Netherlands.
Schoenmakers, K. (2016). Prolongation of regional anesthesia. Determinants of peripheral nerve block 

duration. Radboud University, Nijmegen, The Netherlands.
Altmann, V. (2015). Impact of trunk impairment on activity limitation with a focus on wheelchair rugby. 

Leuven University, Leuven, Belgium.
Bevers, K. (2015). Pathophysiologic and prognostic value of ultrasonography in knee osteoarthritis. Utrecht 

University, Utrecht, The Netherlands.
Cuperus, N. (2015). Strategies to improve non-pharmacological care in generalized osteoarthritis. Radboud 

University, Nijmegen, The Netherlands.
Kilkens, A. (2015). De ontwikkeling en evaluatie van het Communicatie Assessment & Interventie Systeem 

(CAIS) voor het aanleren van (proto-)imperatief gedrag aan kinderen met complexe ontwikkelingspro-
blemen. Radboud University, Nijmegen, The Netherlands.

Penning, L. (2015). The effectiveness of injections in cuffdisorders and improvement of diagnostics. 
Maastricht University, Maastricht, The Netherlands.

Stegeman, M. (2015). Fusion of the tarsal joints: outcome, diagnostics and management of patient 
expectations. Utrecht University, Utrecht, The Netherlands.

Van Herwaarden, N. (2015). Individualised biological treatment in rheumatoid arthritis. Utrecht University, 
Utrecht, The Netherlands.

Wiegant, K. (2015). Uitstel kunstknie door kniedistractie. Utrecht University, Utrecht, The Netherlands.
Willems, L. (2015). Non-pharmacological care for patients with systemic sclerosis. Radboud University, 

Nijmegen, The Netherlands.
Witteveen, A. (2015). The conservative treatment of ankle osteoarthritis. University of Amsterdam, 

Amsterdam, The Netherlands.
Zwikker, H. (2015). All about beliefs. Exploring and intervening on beliefs about medication to improve 

adherence in patients with rheumatoid arthritis. Radboud University, Nijmegen, The Netherlands.
Koenraadt, K. (2014). Shedding light on cortical control of movement. Radboud University, Nijmegen, The 

Netherlands.
Smink, A. (2014). Beating Osteoarthritis. Implementation of a stepped care strategy to manage hip or knee 

osteoarthritis in clinical practice. VU University Amsterdam, Amsterdam, The Netherlands.
Stolwijk, N. (2014). Feet 4 feet. Plantar pressure and kinematics of the healthy and painful foot. Radboud 

University, Nijmegen, The Netherlands.
Van Kessel, M. (2014). Nothing left? How to keep on the right track. Spatial and non-spatial attention 

processes in neglect after stroke. Radboud University, Nijmegen, The Netherlands.



222

Den Otter, R. (2005). The control of gait after stroke: an electromyographic approach to functional recovery. 
Groningen University, Groningen, The Netherlands.

Spruit, M. (2005). Surgical treatment of degenerative disc conditions of the lumbar spine. Biomechanical, 
clinical and radiological aspects. University Utrecht, Utrecht, The Netherlands.

Weerdesteyn, V. (2005). From the mechanisms of obstacle avoidance towards the prevention of falls. Radboud 
University, Nijmegen, The Netherlands.

Jongerius, P. (2004). Botulinum toxin type-A to treat drooling. A study in children with cerebral palsy. Radboud 
University, Nijmegen, The Netherlands.

Van de Crommert, H. (2004). Sensory control of gait and its relation to locomotion after a spinal cord injury. 
Radboud University, Nijmegen, The Netherlands.

Van der Linde, H. (2004). Prosthetic prescription in lower limb amputation. Development of a clinical guideline 
in the Netherlands. Groningen University, Groningen, The Netherlands.

Hendricks, H. (2003). Motor evoked potentials in predicting motor and functional outcome after stroke. 
University of Nijmegen, Nijmegen, The Netherlands.

Hosman, A. J. F. (2003). Idiopathic thoracic spinal deformities and compensatory mechanisms. University of 
Nijmegen, Nijmegen, The Netherlands.

Donker, S. (2002). Flexibility of human walking: a study on interlimb coordination. Groningen University, 
Groningen, The Netherlands.

Hochstenbach, J. (1999). The cognitive, emotional, and behavioural consequences of stroke. University of 
Nijmegen, The Netherlands.

De Kleuver, M. (1998). Triple osteotomy of the pelvis. An anatomical, biomechanical and clinical study. 
University of Nijmegen, Nijmegen, The Netherlands.

Van Balen, H. (1997). A disability-oriented approach to long-term sequelae following traumatic brain injury. 
Neuropsychological assessment for post-acute rehabilitation. University of Nijmegen, Nijmegen, 
The Netherlands.

Tromp, E. (1995). Neglect in action: a neuropsychological exploration of some behavioural aspects of neglect. 
University of Nijmegen, Nijmegen, The Netherlands.

Van Lankveld, W. (1993). Coping with chronic stressors of rheumatoid arthritis. University of Nijmegen, 
Nijmegen, The Netherlands.

Geurts, A. (1992). Central adaptation of postural organization to peripheral sensorimotor impairments. 
University of Nijmegen, Nijmegen, The Netherlands.

De Rooij, D. (1988). Clinical and serological studies in the connective tissue diseases. University of Nijmegen, 

Nijmegen, The Netherlands.




	Voorkant.pdf
	Ensink.3298-Binnenwerk_5.pdf
	Achterkant.pdf

